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Abstract 

The recent release of large amounts of Chest radiographs (CXR) has prompted the research of automated analysis of Chest 

X-rays to improve health care services. DCNNs are well suited for image classification because they can learn to extract features 

from images that are relevant to the task at hand. However, class imbalance is a common problem in chest X-ray imaging, where 

the number of samples for some disease category is much lower than the number of samples in other categories. This can occur as 

a result of rarity of some diseases being studied or the fact that only a subset of patients with a particular disease may undergo 

imaging. Class imbalance can make it difficult for Deep Convolutional Neural networks (DCNNs) to learn and make accurate 

predictions on the minority classes. Obtaining more data for minority groups is not feasible in medical research. Therefore, there 

is a need for a suitable method that can address class imbalance. To address class imbalance in DCNNs, this study proposes, Deep 

Convolutional Neural Networks with Augmentation. The results show that data augmentation can be applied to imbalanced 

dataset to increase the representation of the minority class by generating new images that are a slight variation of the original 

CXR images. This study further evaluates identifiability and consistency of the proposed model. 
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1. Introduction 

Chest X-ray (CXR) is the initial diagnostic imaging tool for 

thoracic abnormalities such as pneumonia, tuberculosis, and 

lung cancer in the clinical setting and remains central to 

screening and diagnosis. The demand for CXR images is due 

to their reasonable sensitivity to various pathologies, low 

radiation dose, and cost-effectiveness [1]. However, the 

volume of CXR images acquired is higher compared to the 

number of qualified radiologists. 

Shortage of qualified radiologists, complexity of inter-

preting the CXR images, and, their value in clinical practice 

has motivated researchers to build automated algorithms for 

Chest X-Ray analysis. Automated CXR analysis has been 

shown to help control variability among radiologists, increase 

sensitivity for subtle findings, provision of analysis where 

radiologists are not available, and, automation of tedious daily 

tasks [1]. 

Deep Learning (DL) methods have widely been adopted for 

the analysis of images and Computer Vision tasks such as 

object segmentation, detection, and classification. Compared 

to other conventional machine learning methods, deep learn-

ing can perform feature extraction eliminating the need for 

human-aided feature extraction which makes DL methods 
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well-suited for medical image analysis. Deep Convolutional 

Neural Networks (DCNNs), deep learning technique have the 

ability to automatically learn features through several network 

layers from large labelled datasets. In medical image analysis, 

DCNNs have been successfully utilized for various tasks such 

as skin lesion classification [2], suspicious region detection [3] 

classification of diabetic retinopathy on fundoscopic images 

[4], and automatic classification of breast cancer histopatho-

logical images [5]. 

Deep Learning-based solutions serve as a second opinion 

tool in the medical field in diagnosis and proper treatment 

planning. However, medical image datasets suffer class im-

balance. This makes it difficult for researchers to develop 

models that are unbiased and accurate [6]. Training a DCNN 

model on imbalanced data regularly results in overfitting of 

the majority class [7]. This is because they aim to optimize the 

overall accuracy without considering the relative distribution 

of each class. To mitigate this problem, this work considers 

data augmentation where the goal is to increase the repre-

sentation of the minority classes in training data to completely 

eliminate the imbalance. 

2. Literature Review 

2.1. Deep Convolution Neural Networks DCNN 

LeCun et al. introduced Convolutional Neural Networks 

(CNNs), a typical deep neural network and applied it for 

handwritten zip code digit recognition and has since been 

successfully used for many classification, recognition and 

segmentation tasks [8]. The powerful learning ability of 

Deep Convolutional Neural Networks (DCNNs) is primarily 

attributed to the use of multiple feature extraction stages that 

can automatically learn representations from the data [9]. 

According to Zeiler and Fergus, the availability of large 

amounts of labeled data, and implementation of GPUs has 

made the training of DCNNs possible, and recently more 

DCNNs architectures have been explored [10]. 

With CNN becoming the state-of-the-art method in the 

computer vision field, advancements in CNNs have been 

explored to improve on the CNN architecture originally in-

troduced by [11] to achieve better accuracy. 

According to Khan et al., the significant improvement in 

the representational capacity of the DCNNs has been achieved 

through architectural innovations [9]. Sermanet et al. utilized 

smaller strides, (2 instead of 4) in the first convolutional layer 

for the best-performing submissions to the ImageNet 

Large-Scale Visual Recognition Challenge (ILSVRC2013) 

[12]. Simonyan and Zisserman used very small receptive 

fields (3 × 3) with a stride of 1 throughout the whole net 

compared to the previous studies where (11 × 11) with 4 

strides and (7 × 7) with 2 strides were used [13]. 

Szegedy et al. proposed a DCNN architecture (Inception) in 

which the depth and width of the network was increased at the 

same time keeping the computational cost constant and lead to 

a 22-layer deep model in the case of the GoogLeNet model 

[14]. Rajpurkar et al. developed CheXNeXt, a convolutional 

neural network with 121-layer DenseNet architecture to detect 

the presence of 14 different pathologies in frontal-view chest 

radiographs [15]. The algorithm was shown to perform as well 

as the radiologists for 10 pathologies and performed better 

than the radiologists on 1 pathology. However, it performed 

poorest in the detection of emphysema and hiatal hernia. 

In medical image analysis, one of the biggest challenge 

faced by researchers is shortage of labeled image datasets. To 

counter the data shortage, researchers are prompted to use 

transfer learning. Transfer learning is based on the concept of 

reusability. The weight and bias of a pretrained model are 

transferred to a new model for training or testing. Transfer 

learning is often implemented with CNN in the way that all or 

some layers of the pretrained model are kept except the last 

layer, which is trained for the specific problem. 

Han proposed a DCNN model with 27 convolutional layers 

alternated with 7 pooling and un-pooling layers. The model 

was based on transfer learning by initializing the model 

weights from a pre-trained model for learning mappings from 

magnetic resonance imaging (MRI) to their corresponding 

computerized tomography scan (CTS) for limited data [16]. 

Asif et al. proposed DCNN based model Inception V3 

(Google’s CNN architecture) with transfer learning for au-

tomatic detection of COVID-19 using chest X-ray radio-

graphs [17]. The transfer learning proved to be effective for 

the classification of COVID-19 Chest X-ray images to normal, 

viral pneumonia and COVID-19 classes and achieved a clas-

sification accuracy of more than 98%. Chakraborty et al. 

applied transfer learning approach with pre-trained VGG-19 

architecture for the classification of COVID-19, Pneumonia, 

and Healthy cases from the chest X-ray images and obtained 

an accuracy of 97% [18]. 

2.2. Data Imbalance 

The problem of data imbalance is prevalent in medical 

image analysis. Class imbalance occurs when classes in a 

dataset are not equally distributed. According to Banik and 

Bhattacharjee, class imbalance occurs when a specific type of 

disease has a significantly lower number of samples in the 

training set compared to other disease categories [19]. For 

instance, in mammography screening, majority of women 

who undergo the screening do not have breast cancer, and 

therefore the malignant samples will be less than benign 

samples [20]. Class imbalance has been shown to affect the 

disease classification task as it affects both convergence 

during the training phase as well as generalization of the 

model on the test set. It also results in a DCNN model with 

poor predictive performance, specifically for the minority 

class. This is because most machine learning algorithms as-

sume that the number of examples in considered classes to be 

roughly similar. However, in many real-life situations the 
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distribution of examples is skewed since representatives of 

some classes appear much more frequently than others. This 

poses a difficulty for learning algorithms, as they will be 

biased towards the majority group. 

Banik and Bhattacharjee observed that a standard classifi-

cation algorithm can be biased towards the majority class and 

ignore the importance of the minority class, which can lead to 

wrong diagnosis [19]. According to Zhang et al., in highly 

class imbalanced learning, majority classes will have domi-

nant effect during the learning process [21]. This implies that, 

the classification costs of the majority classes and minority 

classes are not equal, which leads to the classifier being biased 

towards the majority class. Buda et al. showed that a CNN for 

brain tumor segmentation overfits more on the majority class 

with a higher level of imbalance [22]. 

Li et al. observed that when training with limited and im-

balanced data, the distribution of logit activations may shift 

across the decision boundary at test time, while samples of the 

well-represented class seem unaffected [6]. 

Obtaining more data for the minority groups in medical 

research is not feasible due to the rarity of diseases, patient 

privacy, labeling of images by experts, and cost of conducting 

medical imaging processes. Thus, methods like class 

weighting, and sampling have been presented in literature to 

address the problem of class imbalance. However, their ef-

fectiveness might vary based on the complexity of the task at 

hand and the distribution of the dataset. In the class weighting 

approach, a higher weight is applied to the minority class 

during training when calculating the loss. 

Sampling is one of the main methods used in medical im-

aging to tackle the problem of class imbalance. Either the 

classes with minority samples are over-sampled or the classes 

with majority samples are under-sampled before training to 

create a balanced dataset. The downside to under-sampling is 

that some important and informative examples might be re-

moved from the dataset. The oversampling techniques are 

widely employed in deep learning and have been shown to be 

reliable. 

In a study to address class imbalance in CNNs for small 

lesion detection, Bria et al., compared various methods for 

dealing with class imbalance and found that oversampling the 

minority class (malignant class) to be the most effective ap-

proach [23]. Walsh and Tardy compared various techniques 

for dealing with class imbalance in deep learning classifica-

tion of breast cancer namely, class weighting, oversampling, 

under-sampling, and synthetic lesion generation approach 

[20]. In their study, they noted that oversampling appeared 

dominant and should be applied to a level that entirely elim-

inates the class imbalance. 

This study considers data augmentation as the over sam-

pling technique applied to minority classes that involves cre-

ating new examples that are variations of existing ones in 

order to eliminate class imbalance. 

3. Methodology 

Given 𝑋          is an imbalanced image dataset with 

the labels      where   and   represents the image 

width and height respectively,    is the number of channels, 

  is the number of classes. 

3.1. Data Augmentation 

Let T(.) be a data augmentation function that takes in an 

input sample              from the minority class and 

applies a series of transformations. Denoting the augmented 

dataset as 

𝑋′  𝑇( 1) 𝑇( 2)     𝑇(  )           (1) 

The augmentation process is formulated in the following 

equations: 

   𝑇 ( )                   (2) 

𝑋̂   1         1
    1

 𝑇 (  )          (3) 

𝑋̂ is the expanded training set, which is then employed to 

train a deep CNN. 

3.2. Convolutional Neural Network 

A kernel (filter) 𝑘𝑢 𝑣
  𝑞

 is slid over the input image      

with a stride of 1 and zero padding projecting the ele-

ment-wise dot product as the feature maps. Where m, n rep-

resent the  𝑡ℎ ,  𝑡ℎ pixels. u, v Pixels of kernel, p is the 

number of convolution kernel, q is the number of convolution 

layers, b is the bias. 

The feature maps of the convolution layer     
  𝑞

are com-

puted by, 

    
  𝑞

 ∑ ∑   ( −𝑢  −𝑣)
 
  1

 
  1 ∗ 𝐾𝑢 𝑣

  𝑞
+ 𝑏  𝑞     (4) 

The feature maps are passed through a non-linear activation 

function ϑ for non-linear transformation, where ϑ is the Rec-

tified Linear Unit (ReLU) activation function. The function 

can be expressed as  ( )     (   ) 

    
  𝑞

 𝜗(∑ ∑   ( −𝑢  −𝑣)
 
  1

 
  1  𝐾𝑢 𝑣

  𝑞
+ 𝑏  𝑞)   (5) 

Max pooling operation is applied to condense the image. 

The pooling layer     
  𝑞

 is developed by taking out the max-

imum valued pixels m, n in the convolution layers. The 

pooling layer is calculated by, 

    
  𝑞

 max(    
  𝑞

)              (6) 

The pooling layer    𝑞 is concatenated to form a long 
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vector with the length of  ∗   and is fed into the fully con-

nected dense layers for the classification, then the vectorized 

data points a   
 −1 layer is given by, 

  
 −1   (   𝑞)               (7) 

This long vector is fed into fully connected dense layers 

from l layer to L+1. Where l is the first layer, L is the last layer 

and (L+1) is the classification layer. 

the forward run between the layers are given by, 

[
 
 
 

 

𝑧1
 

𝑧2
 

⋮
𝑧 

 ]
 
 
 

 

[
 
 
 
𝑤11

 𝑤12
  𝑤1 

 

𝑤21
 𝑤22

  𝑤2 
 

⋮ ⋮ ⋮
𝑤 1

 𝑤 2
  𝑤  

 ]
 
 
 

[
 
 
 
 1

 −1

 2
 −1

⋮
  

 −1]
 
 
 

+

[
 
 
 
𝑏1

 

𝑏2
 

⋮
𝑏 

 ]
 
 
 

     (8) 

The input values   
 −1 are multiplied by weights 𝑤  and 

bias values 𝑏 
  are added. The output value of last layer 𝐿 is 

given by, 

 𝐿  𝜗((𝑊𝐿)𝑇 𝐿 −  + 𝑏𝐿)           (9) 

where,  𝐿  𝜗(𝑧𝐿) 

The output of  𝑡ℎ layer is,    𝜗((𝑊 )𝑇  −1 + 𝑏 )   

𝜗(𝑧 ) where 𝜗 is the logistic activation function. The final 

output predicted value 𝑌
 

 
𝐿 1  at 𝐿 +   layer can be ex-

pressed as, 

𝑌̂(𝑋; 𝜃)  𝜗(𝑊𝐿   𝜗(𝑊2(𝜗(𝑊1 1 + 𝑏1) + 𝑏2  + 𝑏𝐿))) (10) 

The output is the probability         

   
𝑒𝑥𝑖

∑ 𝑒
𝑥𝑗

𝑛

𝑖=𝑗

   

The statistical model relating Y to 𝑌̂(𝑋; 𝜃) is: 

𝑌  𝑌(𝑋; 𝜃) + 𝜖              (11) 

The performance of the model is computed by the follow-

ing loss function equation as shown, where 𝑌
 

 
𝐿 1is the pre-

dicted value and 𝑌  actual value. 

The cross-entropy loss function is given as, 

𝐽(𝑌 𝑋; 𝜃)  −
1

 
∑ (𝑌 )  (𝑌(𝑋 ; 𝜃)) + ( − 𝑌 )  ( −

 

 

𝑌(𝑋 ; 𝜃))           (12) 

Where   is the total number of training samples and 

𝜃 represents all the parameters. In order to minimize the loss 

function, L-BFGS is adopted for this study where the learning 

parameter is updated at every iteration process a until termi-

nation criterion is met. 

Stopping Rule 

1.  𝜃  1 − 𝜃   𝜖, for 𝜖    

2. r > MAX where MAX is pre-specified number of itera-

tions 

3.  𝐽(𝑌 𝑋; 𝜃(  1)
 

) − 𝐽(𝑌 𝑋; 𝜃( )
 

)  𝜖  where ε > 0 but 

small 

4. 𝐽(𝑌 𝑋; 𝜃( )
 

)       which is a pre-specified lower 

bound for the training error 

3.3. Statistical Properties of DCNN with  

Augmentation 

3.3.1. Model Identifiability 

According to Hwang and Ding, identifiability of parame-

ters is a fundamental problem in neural networks [24]. Con-

sider a DCNN with an activation function 𝜗 and H hidden 

nodes. This paper considers different sets of parameters with 

their corresponding distributions being identical. Therefore, 

the parameters are not unique. The model weights are repre-

sented as follows: 

𝛼0 and Φ  (𝛼  𝑊 ) for         𝐻 where 𝑊  

(𝑊 0     𝑊  ) 

To assess model identifiability, consider the following two 

transformations that leave the input-output map of DCNN 

with augmentation model unchanged. 

(i) The Permutations of Φ 
′ : 

Consider two hidden nodes, if they are interchanged, say 

   and    where f and g denote the node’s position, and 

relabel them as    and    and also relabel the corresponding 

weights as 𝛼  and 𝛼 , and 𝑊  and 𝑊 , the output 𝑌(𝑋; 𝜃) 

remains unchanged. 

(ii) Symmetry of 𝜗( ): 

That is: 

𝜗( )= − 𝜗( )            (13) 

Select a hidden node    and negate the weights 𝑊  as well 

as 𝛼 , then the input-output map does not change. This implies 

that, (𝛼0 Φ1     Φ      Φ ) and (Φ0 Φ1     −Φ      Φ ) 

have the same input-output map. These transformations yield 

   different models with similar input-output map [24]. 

Taking   to denote the transformations, similar to Hwang 

and Ding, each transformation is a composite function of 

 1       [24]. 

Where 

 1(𝛼0 Φ1     Φ      Φ )  (Φ0 −Φ1     Φ      Φ ) 

and 

  (Φ0 Φ1     Φ      Φ𝐿)  

(Φ0 Φ  Φ2 Φ −1 Φ1 Φ  1     Φ𝐿)       (14) 

for         𝐻 
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Theorem 1: Assume that the model’s output and the acti-

vation function 𝜗, and further that 𝜗 is a continuous function 

satisfying condition A of [24]. Suppose that the parameter 𝜃 

is irreducible. Then, 𝜃  is identifiable up to the family of 

transformations generated by equation (14). 

3.3.2. Model Consistency 

Consider the loss function  (  )  let 𝐽0(𝜃)    𝐽(𝜃)  

denote the expectation of 𝐽(𝜃)  𝐽(𝜃) is minimized at true 

parameter value 𝜃0. 

The consistency of the estimator 𝜃̂ is obtained by mini-

mizing the objective function equation (12). This then means 

that 𝜃̂  𝜃0 for     in probability. 

Rewrite the model as 

𝑌   (  ) + 𝜖                    (15) 

Where 𝜖  is defined as 

𝜖  𝑌 −  (𝑋 )              (16) 

And   𝜖     

𝑉 𝑟 𝜖   𝜎𝜖                (17) 

Consider the uniform law of large numbers (ULLN). 

Theorem 1: Let  1  2     be independent and identically 

distributed random vectors in   ,    𝑀 compact, 

          measurable such that; 

   ( 1; 𝜃)    for all 𝜃  Φ 

 ( ; 𝜃) is Lipschitz continuous in θ 

  𝐿( 1)    

Then, sup𝜃 𝜙 |
1

 
∑  (   𝜃) 

  1 −   (  ; 𝜃)|    in proba-

bility 

Assumptions: 

(A1) The activation function 𝜗 is bounded and twice con-

tinuously differentiable with bounded derivatives [25]. 

(A2) 𝐽0(𝜃) has a unique global minimum at 𝜃0 lying in the 

interior of 𝜃, and with the Hessian 

𝐴(𝜃0)  (
𝜕2

𝜕𝜃𝑘𝜕𝜃𝑙
𝐽0𝜃)  ∇2𝐽0𝜃  where 𝐴(𝜃0)  is positive 

definite. 

(A3) Let   be such that for some    , then,   

𝑌(𝑋; 𝜃)   −  𝑋     𝜃    

(A4) (𝑌  𝑋 )           be i.i.d with density ζ (x) and 

  𝑋1 
2    

(A5) p(x) is continuous in x and      ( )   −   

  for some η > 0 

Theorem 2: Let (𝑌  𝑋 )           be i.i.d with 

𝐿(𝑌  𝑋 )   (   (𝑋 )). Suppose that assumptions A1 to A5 

are satisfied, then, for    , with 𝜃̂ 𝜃0, as previously shown, 

√ (𝜃̂ − 𝜃0)  
𝐿

𝑁(  Σ1 + Σ2)  

where Σ1  𝐴−1(𝜃0) 1(𝜃0)𝐴
−1(𝜃0) 

and  Σ2  𝐴−1(𝜃0) 2(𝜃0)𝐴
−1(𝜃0) 

 1(𝜃0)   
( (𝑋1)−𝑌(𝑋1;𝜃0))2

𝑌2(𝑋1;𝜃0)(1−𝑌(𝑋1;𝜃0))2
∇  

𝑌(𝑋1; 𝜃0)∇
𝑇𝑌(𝑋1; 𝜃0)  

 2(𝜃0)   
 (𝑋1)(1− (𝑋1))

𝑌2(𝑋1;𝜃0)(1−𝑌(𝑋1;𝜃0))2
∇  

(𝑋1; 𝜃0)∇
𝑇𝑌(𝑋1; 𝜃0)  

And 𝐴(𝜃0) is as defined. The proof of this theorem can be 

found in [25]. 

4. Results 

4.1. Data 

The Chest X-ray Dataset was obtained from [26]. The 

dataset contains CXR images (anterior-posterior) in JPEG 

format selected from historic cohorts of pediatric patients 

between the age of one to five from Guangzhou Women and 

Children’s Medical Center, Guangzhou. The training set has 

a total of 5,232 chest X-ray images and the test set a total of 

624 CXR images characterized as depicting pneumonia 

(bacterial and viral) and normal (no Pneumonia). The 

training data was split into 80% training and 20% validation 

based on Patient’s unique ids to prevent data leakage. The 

distribution of the data in the training, validation and the 

testing sets is as follows. 

Table 1. Distribution of the dataset. 

Counts 

Class Train Validation Test 

Bacterial Pneumonia 2053 486 242 

Viral Pneumonia 1083 276 148 

No Pneumonia 1071 268 234 

From Table 1 the data is imbalanced as majority of the 

samples have Bacterial pneumonia. Training a DCNN model 

on the data will result in mis-classification of samples, as most 

of the samples will be classified as "Bacterial Pneumonia". 

Figure 1 shows a sample of the Chest X-ray images in the 
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dataset. 

 
Figure 1. Sample images. 

4.2. Data Augmentation 

Table 2. Data Augmentation Techniques. 

Technique Parameter 

Horizontal flip True 

Rotation [-15°, +15°] 

Height shift 0.1 

Zoom 0.1 

CLAHE Clip limit 0.02 

Data augmentation was applied to the training set images to 

oversample the minority classes (No Pneumonia and Viral 

Pneumonia) to eliminate class imbalance. The testing and the 

validation sets are not balanced as they represent real world 

data distribution. For this paper, the following augmentation 

techniques were applied to the minority classes shown in 

Table 2. 

The minority classes were oversampled to be equal to the 

majority class. A total of 1952 new CXR images were created 

for the "No Pneumonia" and "Viral Pneumonia" groups. 

Figure 2 shows a sample of the augmented images. 

 
Figure 2. Sample of augmented images. 
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4.3. Model Analysis and Evaluation 

The CXR images were of different sizes, and therefore, 

they were resized from their original resolution to 224×224 

pixels to make the classification problem easier. A batch size 

of 128 was used for both training and testing and a learning 

rate 0f 0.01 was selected. 

A pretrained ResNet18 via fine-tuning was first fit using 

the imbalanced training data and evaluated using the valida-

tion data while tuning the hyperparameters. The fully con-

nected (FC) layer head was removed from the pre-trained 

network, and a new FC layer head with 2 dense layers con-

structed and placed on top of the original body of the network. 

In the first training, the weights in the body of the DCNN were 

frozen, and the new layer head was trained. In the second 

training the weights were unfrozen and trained 

the entire network to allow the model to learn and optimize 

new parameters. The model was then fit using the balanced 

dataset and evaluated using the validation set. 

The DCNN architecture is represented in Figure 3. 

The model was trained for 20 epochs and then evaluated on 

the validation set. The training and validation accuracy and 

error curves are presented in Figure 4. 

The out-of-sample predictions were done on the test set 

where an overall accuracy of 88% was obtained by the model 

trained on the imbalanced dataset (without augmentation) and, 

an overall accuracy of 91% from the balanced dataset (with 

augmentation) which was an improvement of +3 compared to 

the imbalanced data. 

The proposed model was evaluated on various performance 

metrics which include sensitivity, specificity, Precision, 

F1-score, Negative predictive value on the test set. The pro-

posed model correctly identified and classified the CXR images 

into 3 distinct classes and achieved an overall accuracy of 91%. 

 
Figure 3. DCNN architecture. 

 
Figure 4. Training and validation accuracy and error curves. 

The confusion matrix is as shown in Figure 5. 
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Figure 5. Confusion matrix. 

Table 3. Evaluation metrics. 

Class Sensitivity Specificity Precision Negative Predictive Value F1-Score 

Bacterial Pneumonia 0.9504 0.9372 0.9055 0.9676 0.9274 

No Pneumonia 0.9274 0.9769 0.9602 0.9573 0.9435 

Viral Pneumonia 0.8176 0.9516 0.8403 0.9438 0.8288 

 

From Table 3, DCNN with augmentation was able to cor-

rectly identify and classify the CXR images achieving sig-

nificant results for all classes. The high sensitivity, specificity, 

precision, F1-score and negative predictive value, demon-

strates the effectiveness of DCNN with augmentation. 

5. Conclusion 

In this study, data augmentation is presented as a prepro-

cessing technique to address the problem of class imbalance in 

the dataset. The results from this study show that data aug-

mentation can help solve the problem of class imbalance by 

generating new images from minority groups that are a slight 

variation of the original images. Deep Convolutional Neural 

Network was thereafter used to identify and classify CXR 

images into 3 distinct categories namely; Bacterial Pneumonia, 

No Pneumonia (Normal) and viral Pneumonia. Eliminating 

class imbalance completely from the training data helped the 

proposed model not to biased towards the majority group. The 

DCNN with augmentation can therefore be used to predict 

pathologies in CXR images and this can assist radiologists to 

automate repetitive tasks and overcome reader variability. 

In this paper, a medical image classification algorithm 

based on neural networks was presented. This project shows 

the true power of machine learning in real-life use. Since the 

model clearly has satisfying metrics such as accuracy, preci-

sion, F1 score etc., it could, with further parameter adjustment 

which would resolve the issue of overfitting, be used in a 

real-life environment. The findings of published papers that 

neural networks can be of exceptional help in healthcare, have 

been repeated and confirmed. 

Future studies should explore other data augmentation 

techniques for imbalanced data to improve the performance of 

the proposed model. Further extension of this research work 

should focus on using much larger CXR datasets with both 

pediatric and adult CXR images for various chest pathologies 

and higher class imbalance. In addition, the success of the 

proposed model can be extended to real clinical trials. 
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