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Abstract: The damage levels of the maize spotted stem borers (Chilo partellus Swinhoe) are estimated at 400,000 metric 

tons, which is equivalent to 13.5% of farmers' annual maize harvest accounting for US$80 million. Despite the economic 

importance of the pest, information on the incidence under long-term organic and conventional farming systems is lacking. 

This study evaluated three different link functions [logit, probit, and complementary log-log – (clog-log)] to reduce prediction 

errors in overdispersed stem borer incidence data for 12 years in four farming systems. The clog-log link function had the 

lowest Akaike information criterion (AIC) and Bayesian information criterion (BIC) indexes for the pest incidence model in 

Thika. Contrarily, probit showed the lowest AIC and BIC in the Chuka incidence data model. The residual diagnostic plots 

with clog-log demonstrated no patterns against the predicted values. Our findings revealed that clog-log link function provided 

the best fit in beta-binomial mixed models compared to others. We advocate for the use of clog-log for long-term pest 

incidence data modelling to obtain biologically realistic projections. Users of mixed models must incorporate explicit 

consideration of suitable link function discrimination, model fit and model complexity into their decision-making processes if 

they build biologically realistic models. 
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1. Introduction 

In Africa, maize (Zea mays L.) is considered one of the 

most important staple food crops liked by everyone. In areas 

of scarcity, the massive shortage has been equated to famine 

with increased food insecurity challenges. In most cases, this 

can be attributed to high incidence and damage caused by 

spotted stem borer (Chilo partellus, Swinhoe), leading to 

reduced maize grain yield loss estimated annually at about 

400,000 metric tons, equivalent to US$91 million [1]. 

Several pest management options have been used to suppress 

the devastating effects of stem borers on maize but with 

limited successes. Chemical control methods have proved to 

be the most effective yet expensive to smallholder farmers 
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and pose risks to humans, livestock, and the environment. 

Mitigating the impacts of stem borer attacks requires 

rapidly identifying incidence in affected farms as they 

spread further. Understanding the incidence of infestation 

native species have become increasingly common. Locally 

established pest species might have explored the range of 

available environmental conditions and may have uniform 

and abundant distributions that reflect dispersal limitations. 

Because these species currently have undergone range 

expansion at climate equilibrium, describing their incidence 

thus requires a flexible modelling approach that uses broad-

scale, long-term comprehensive data on species occurrences 

to distinguish informative and uninformative absences. 

Binomial proportions are encountered in many different 

fields of study. Modelling of these data has a long history in 

the statistical domain, including chi-square tests for 

contingency tables and binomial regression models [2, 3]. 

Binomial proportions are considered to arise from a number 

of successes in binomial experiments [4]. It is common to 

model such data using a generalized linear model (GLM) 

framework, limiting all specifications to first and second 

moments [5]. GLMs are distinguished by their membership 

in the exponential family and their mean-variance relation, 

except for normal distribution [6]. The GLM framework has 

been extended to generalized linear mixed models (GLMM) 

in the case of longitudinal data or repeated measures where 

the response variable on the experimental unit is recorded 

over time. The primary feature of GLMM is the addition of 

subject-specific or random effects in the linear predictors [7]. 

Response variables that are discrete or grouped binary data 

(proportion of a number of "successes" out of the total 

number of units exposed to a particular set of experimental 

conditions) exhibit overdispersion, indicating that the 

residual variance is larger than expected under the fitted 

model. This phenomenon is most common with members of 

the exponential family, such as binomial and poison 

distributions with a fixed dispersion parameter φ = 1 

associated with the respective distribution variance. 

Experiments with discrete and bounded outcomes usually 

have over/underdispersed binomial proportions that appear 

dispersed and accumulate values at one or both of the 

distribution scale's edges [8]. Overdispersion is more 

common than underdispersion. There are two main issues 

associated with the presence of overdispersion, (i) p-values 

tend to be too small, increasing the possibility of committing 

a type I error in which the null hypothesis is rejected when it 

is true, (ii) confidence intervals are too small leading to 

overconfidence about the precision of the estimates. 

A lot of literature has proposed models that allow the 

dispersion parameter not to be 1, i.e., � ≠ 1, thus a less 

restrictive variance-mean relationship [5]. The research of I. 

Arostegui and others on beta-binomial approach presented 

the beta-binomial distribution as a suitable fit for some 

binomial proportions of patient-reported outcomes and 

found it reliable [8]. The authors demonstrated the 

appropriateness of the beta-binomial distribution in a 

cross-sectional framework compared to other exponential 

family members that are often utilized, such as the 

binomial and normal distributions. [8] demonstrated that 

the beta-binomial model adequately accounts for the 

correlation structure among grouped binary observations 

while allowing for a flexible relationship between the 

response's mean and variability. 

Within a beta-binomial mixed-effects regression model, 

the probability of success is related to predictor variables 

conditional on the random effects; nevertheless, the 

likelihood of success is not explicitly predicted as a linear 

combination of the independent variables [9]. A link 

function is applied to a linear combination of exploratory 

variables to predict the probability of success conditional 

on random effects [10]. In other words, a link function 

connects a nonlinear relationship to a linear relationship to 

fit a linear model, which is then mapped to the original 

form by taking the inverse of the link function. The inverse 

link function can be specified by any monotonically 

increasing function that transforms values from the range [-

∞, ∞] to [0,1]. All inverse link functions are created from 

known random distributions' cumulative density function 

(CDF) [11]. For example, the inverse cumulative density 

functions of the normal, standard logistic, and Gumbel 

distributions are used to form the probit, logit, and 

complementary log-log link functions. 

Among the most commonly used link functions in beta-

binomial mixed effect, models are the probit, logit, and 

clog-log [12]. The logit link is preferred because of the 

ease with which parameter estimates can be interpreted 

using odds ratios. On the other hand, the logit model 

cannot always be relied upon to provide a satisfactory fit 

for all beta-binomial mixed-effects regressions, 

particularly in the case of asymmetric models [13]. When 

the link function is incorrectly defined, the possibility for 

significant bias and increased mean squared error 

increases [14]. Asymmetrical link functions include the 

complementary log-log link function while probit and 

logit links are both symmetrical. Symmetric links assume 

that binomial proportions approach zero at the same rate 

that they approach one. The asymmetric link assumes that 

binomial proportions approach zero at a different rate than 

they approach one. [15] indicated the sensitivity of the 

inferences if the symmetric link was incorrectly used in 

the direction of an asymmetric model. 

Agriculturalists and researchers may wish to achieve the 

most reliable estimates in comparison of farming systems' 

binomial proportions in LTE. One of the factors to 

consider is the link function in binomial mixed models of 

their choice to explain different sources of variations. The 

main objective of this study is to compare the performance 

of three link functions on binomial proportions from a 

long-term experiment carried out in two sites in central 

Kenya highlands. A review of the generalized linear 

mixed model (GLMM) and beta-binomial mixed effect 

models for overdispersed binomial proportions is also 

presented. 
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2. Related Studies 

2.1. Generalized Linear Mixed Models Formulation 

Consider ���� = 1,2,3, . . . , 
�  to denote an observed 

response. Let �  be a design matrix and ��′  be the ��ℎ 

observation in � ,�  is the fixed effects parameters. � is the 

second design matrix and ��′ is ��ℎ observation in � and � is 

the random effects. Generalized linear mixed models 

(GLMM) take the following form: 

�������� = ��� = �� � + �� �             (1) 

where g (.) denotes the link function that is generated from 

the ICDF of the random distribution g. If there is a random 

effect �  GLMM of ��  is an extension of the GLM so that 

random terms can be included in the linear predictors of 

conditionally independent observations. This allows 

overdispersion, correlation, and heterogeneity to be 

considered. 

A GLMM must satisfy the following conditions. 

"���|�� = $�� %&'('�)�('�*'�+� + ,��� , ��-               (2) 

where .�  is the natural parameter, �  is a known 

overdispersion scalar, /�is a prior weight, and /����, 0�.�,� 

and ,��� , �� are known functions. The conditional mean and 

variance of a GLMM is give as; 

1���|��� = 2�� = ℎ�����′� + ��′��� = 0 �('�     (3) 

3���|��� = +*' 04�(� = +*' 3�2���           (4) 

In this case, 0 �.�� is the first derivative, and 0  �.�� is the 

second derivative of 0�.��	and ai is a known prior weight, 

usually 1. 

The random effect ��, . . . , �6 , are mutually independent 

with a common underlying distribution 7 which depends on 

the unknown parameters 8. That is; their probability density 

function is denoted by "���� with an assumption that means �� = 0 and 3/:���� = 7. 

�� ∼ ��0�0, 7� 

It is necessary to specify "���<|��,� and "���� in GLMM. 

Based on "���<|��,�  and "����  the marginal density of Y, "���<|��� is given by 

"���<|��� = ∫ ∏ "?'<@� ���<|���"����0��         (5) 

Because the marginal density "���<� is a normal density, 

an analytical or closed-form solution for integral eq.5 could 

be obtained using the linear mixed model (LMM). The 

likelihood function in the generalized linear mixed model 

(GLMM) is built using the marginal density "���<� . In 

general, "���<� is difficult to compute because "���<� "���� 

can be a complex function with high-dimension integrals. As 

a result, approximation methods must be used to solve the 

integral. Assume there are k groups, and each group has 
� 
units; � = 1,2, . . . , A. The likelihood function for k groups is 

then calculated as follows. 

B�.� = "���<� = ∏ ∫C�@� ∏ "?'<@� ���<|���"����0��    (6)	
To approximate likelihood function eq.6 using Laplace 

approximation, the equation is rewritten as: 

∫ ∏ "?'<@� ���<|���"����0�� = ∫ "�y|b�"���	        (7) 

= ∫ $FGHI�J|K�I���0b = ∫ $H���0b                  (8) 

where ���� = LM�"�y|b�"�y|b� 

We want to choose �N  in such a way that ����  is 

maximized by satisfying the necessary and sufficient 

conditions � ��� = 0  and �  ��N� < 0 . The following 

expression gives the second-order Taylor expansion around �N 

for ����: 

���� ≈ �Q��� = ���N� 	+ 	�� − �N�	� ��N�	+ 	�S �� − �N�S�  ��N� (9) 

= ���N� − �S �� − �N�S T−�  ��N�U             (10) 

This shows that $HQ��� is proportional to the normal density �2V , WVS�  where _L=b and 2V = �N  and WVS = − �HXX��N�  is the 

normal density. So, the Laplace approximation for the 

likelihood B�.� is given by the following formula: 

�.� = ∫ $H���0� ≈ ∫ $HQ���0�                   (11) 

= $�� T���N�U ∫ $�� Y− �SZ[\ �� − 2V�S] 0� =
$�� T���N�U^2_WVS                (12) 

Also, be stated that 

��|�� = I�&|��I���I�&� ∝ $�������� ≈ ,M
ab  $���� − 2V�S  (13) 

d|e = � ≈ f�2V , WVS�. 

2.2. Beta-Binomial Distribution 

Consider the variable ���� = 1,2,3, . . . , 
� to represent an 

observed binary response with a random variable g  that 

follows a beta distribution with parameters 8, � > 0 . The 

binary responses are assumed to be independently distributed 

and identical conditional on the random variable g. 

�<|g ∼ d$:�g�  ��0,   iℎ$:$  g ∼ d$b/�8, ��, j= 1,2,3⋯ , 
 

with 

1�g� = �    /
0   l/:�g� = m���m�+��n+�   

Where � = o�onp� and � = ��oqno\�. 
As a result, the mean and variance of the outcome variable 

are computed as follows; 

1��<� = 1r1��<|g�s = �              (14) 
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l/:��<� = l/:r1��<|g�s + 1rl/:��<|g�s = ��1 − ��, j =1,⋯ , 
.                              (15) 

The mean and variance correspond to moments of 

Bernoulli distribution, but observations are assumed to have 

a between-subject correlation which is given as; 

t = uM::��< , �C� = vGw�&x,&y�
z{*|�&x�^{*|�&y� = +�n+ , A, j =

1,2,3,⋯ , 
	and	j ≠ A              (16) 

The parameter �  in the eq. 16 is determined as the 

dispersion parameter. The Sum of all correlated binary 

outcomes can be defined as: 

� = ∑ �<?<@� ,                             (17) 

which is a beta-binomial random variable with three 

parameters: �,  �,  /
0  � . Given a binary response 

conditional on the occurrence of a random effect, as follows: 

�|g ∼ d�
��, g�  /
0  g ∼ d$b/��/�, �1 − ��/��. 
The beta-binomial distribution's probability mass is given 

"��� = ∫ "&|��� ��|g�"��g�0g                 (18) 

= T?&U �Tq�U
�Tq�n�U

�T��n&U
�T��U

�T�q���� n?�&U
�T�q���� U                (19) 

Furthermore, the mean and variance of the beta-binomial 

distribution is given as; 

1��� = 
�                             (20) 

l/:��� = 
��1 − �� �1 + �
 − 1� +�n+�          (21) 

Thus, the beta-binomial model can be thought of as a 

binomial distribution with extra variability because of the 

correlation between the �< 	Values. 

2.3. The Mixed Effects Beta-Binomial Model 

With the addition of random effects in the linear predictor, 

this section makes the marginal beta-binomial regression 

more general. Consider the variable ���� = 1,2,3, . . . , 
�  to 

represent an observed response conditional on the random 

effects � . Assuming y is taken to be selected from a 

beta−binomial distribution and that random effect � is taken 

derived from a multivariate normal distribution with zero 

mean and variance−covariance matrix D, then; 

��|� ∼ dd�
�, �� , ��  /
0  � ∼ ��0, �����,     � = 1,⋯ , 
 

Let . = ��, ��  denote the parameter vector of mode1's 

variance or dispersion components. A link function connects 

the response variable of a beta-binomial distribution to the 

predictor variables conditional on the random effects. If a 

logistic link function is used, the model takes the form; 

�� = LM� m'��m' = �� � + �� �,   � = 1,⋯ , 
         (22) 

And the likelihood function is given as follows; 

B��, .|�� = ∫ ∏ "?�@� ���|�, �, ��"��|��0�     (23) 

The beta-binomial density function is denoted by "���|�, �, �� While the multivariate normal density function 

for the random effects is denoted by "��|�), the marginal 

likelihood has no closed form, just as it does in the case of 

the GLMM, and numerical calculation is almost impossible 

due to the beta-binomial distribution's complexity. As a result, 

approximation procedures for estimating the parameters in 

the model must be developed. 

The marginal likelihood of the beta-binomial model can 

also be expressed in exponential form as; 

B��, .|�� = ∫ $���∑ L?�@� M�"���|�, �, �� + LM�"��|���0� (24) 

In this case, the approximation is obtained because the sum 

of two twice differentiable regular functions is also a twice 

differentiable regular function. 

M�B��, .|�� ≈ L��, .|�, �Q� = ℎ��, .|�, �Q� − �S LM��0$b���� (25) 

and then 

ℎ��, .|�, �� = ∑ L?�@� M�"���|�, �, �� + LM�"��|��  (26) 

∑ [?�@� ∑ L&'��C@� M���� + A�� + ∑ L�'�&'��C@� M��1 − �� + A�� −∑ L�'��C@� M��1 + A���� − �S log	�0$b���� − �S � ����]  
Eq.26 defines the model's joint log-likelihood. �Q  gives a 

solution of ∂ℎ/ ∂� = 0  and − − �S LM��0$b����  is the 

adjusted term with 

� = �\��� ��X |�@��                       (27) 

The marginal log-likelihood approximation is the same as 

integrating random effects in the first-order Laplace 

approximation. 

2.4. Estimation of the Fixed and Random Effects 

When estimating fixed parameters, it is assumed that . is 

constant, attempting to maximize the approximated log-

likelihood. The log-likelihood is denoted as 

��|�Q, .� = ���� + ℎ��|�Q, .�             (28) 

Thus, the scoring equation for the model's fixed variables 

is provided by 

���� = ���p��p + ���p|&,��,(��p                      (29) 

The beta-binomial mixed-effects model has these 

characteristics. 

���� = − �S LM��0$b���� = − �S LM��0$b�� �� � − ���� (30) 
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� = 0�/�����1 − ���� ,   = 0�/��¡�� , ¡� =−3����1 − ��� + ¢��1 − 2��� and 

£¢� = ∑ �m'nC+&'��C@� − ∑ ���m'nC+�'�&'��C@�3� = ∑ ��m'nC+�\&'��C@� + ∑ ����m'nC+�\�'�&'��C@�       (31) 

all of the preceding formulas were evaluated at � = �Q  for � = 1,⋯ , 
. It is evident from the weight matrices W and S 

that A (.) is simply reliant on �. The Weight matrices are 

assumed to vary slowly or not vary as a function of fixed 

effects. Next, in eq. 29, the first term is disregarded while the 

second is maximized to the utmost extent possible to get the 

most likely estimates of the fixed effects. Eq. 26 defines a 

joint log-likelihood function, which is responsible for 

collecting all of the information about �. 

As a result, the maximum likelihood estimate of fixed 

effects can be obtained by maximizing the joint log-

likelihood of the fixed and random effects. The log-

likelihoods of � and ¤ may be decomposed into the 

following scoring equations. 

¥¢ �� = 0¢ �� − � ��� = 0                      (32) 

Various numerical algorithms can be used to solve the 

previous equation iteratively. The delta technique, a variant 

of the Newton–Raphson method, is presented as a solution to 

the complexity of the second derivative of the beta-binomial 

density function. 

In this study, we explore different beta-binomial mixed 

effects models for the analysis of overdispersed binomial 

proportions on stem borer infestation and identify the best 

model for the analysis of the data in question and other 

similar binomial proportions. 

3. Methodology 

This study utilized data from a long-term experiment 

(LTE) on cropping systems. The study was carried out in 

two sites, Chuka and Thika, as part of a long-term farming 

system comparative trial that began in 2007 [16]. Four 

treatments were selected to describe farming systems 

(Conventional and Organic) and input levels (Low and 

High) in a long-term farming system experiment. 

Conventional treatments received chemical fertilizers and 

pesticides, while Organic treatments received only fertilizer 

materials (compost) and pesticides recommended for 

organic farming. The input level treatments designated by 

'High' were designed to emulate farmers who target distant 

high-value markets (both local and export) and apply 

commercial rates of pesticides and fertilizers. In contrast, 

the 'Low' treatments were intended to emulate typical rates 

of pesticides and fertilizers used by smallholders, where the 

produce are consumed by household or sold in the local 

markets. There were, therefore, two sets of treatments under 

study per input level, namely: conventional high and 

organic high system (set 1) and conventional low and low 

organic system (set 2). 

3.1. Link Functions 

The main reason to use link functions is to convert the 

linear combination of covariates ranging from -∞ and +∞ to a 

probability scale of 0 and 1 [17]. 

3.1.1. Logit Link Function 

A logit link function is used to model the probability of 

success as a function of explanatory variables [18]. For 

example, the logit link function is defined as 

M��b��� = ln T m��mU = X� + Z�              (33) 

Where p is the probability of success, X is the fixed effects 

design matrix, � is the fixed effects regression coefficients, Z 

is the random effects design matrix, and �  is the random 

effects coefficients. 

Using a different arrangement of the variables, eq. 33 may 

be transformed into the following connection with the 

variables: 

� = ¦§m�XpnZ���n¦§m�XpnZ��                        (34) 

The logit of p is also referred to as the log odds for success 
in certain circles. In statistics, the chances of success (i.e., 
how much bigger the likelihood of success is compared to the 

probability of failure) are stated as the ratio T m��mU. 

3.1.2. Complementary Log-Log (Clog-Log) 

Complementary log-log (Clog-log) is an asymmetric link 

function used to represent success probabilities as a function 

of explanatory factors [3]. The link takes the form: 

� = log�−log�1 − ��� = X� + Z�           (35) 

where 

p = ©�e = 1|� = �� 

So $����� is not the odds since exp��� = −log�1 − p� 

Hence exp�−exp���� = 1 − p  and 1 − exp�−exp���� =p. 

Therefore, if we require an odds ratio for a certain 

covariate, we can compute one, but the parameters lack a 

straightforward, clear meaning regarding contribution to log 

odds. The complementary log-log model's parameters have a 

tidy explanation in terms of the hazard ratio, that is; 

$ª = −log�1 − p� = −log��§�              (36) 

Where � is the survival function. Now the hazard is 

ℎ��� = − ))§ log��§� = ))§ $ª                (37) 

3.1.3. Probit Link Function 

The probit model uses the cumulative distribution function 

of the standard normal distribution to model the probability 

of 'success' as a function of explanatory variables [19]. The 
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model is of the form 

«����� = X� + Z�                      (38) 

3.2. The Data 

Twenty plants per plot were sampled from 2007 to 2013, 

and 40 from 2015 to 2019, and pest incidence was assessed 

from the sampled plants. Thus, the response variable 

(binomial proportions) is the total stemborer incidences for 

each plot of 20 or 40 sampled plants. 

_�<C 	= 	∑6���¦|	GI	mF*?�¬	­���	¬�¦��G|¦|	m¦|	mFG�¬*�mF¦)	mF*?�¬     (39) 

We model the relationship between binomial proportions 

and the type of farming using a beta-binomial generalized 

linear mixed model. Three possible models with three-link 

functions are presented as follows; 

LM��b�_�<C� = ln Y ®'xy
��®'xy] = ��<C = 1�_�<C¯��C , � = �� +
8� + �< + 8��< + ��C                      (40) 

�:M��b�_�<C� = «���_�<C� = ��<C = 1�_�<C¯��C , � = �� +
8� + �< + 8��< + ��C                     (41) 

uLM� − LM��_�<C� = log T−log�1 − _�<C�U = ��<C =
1(_�<C|��C , ) = �� + 8� + �< + 8��< + ��C  

where; 

�� Denotes the intercept of the model. 

8� Denotes the �bℎ farming system effect. 

�< Denotes the jbℎ Year effect. 

8��<  Denotes the �jbℎ farming system x Year interaction 

effect. 

��C ∼ �(0, W�S) between-subjects (plots) effect. 

3.3. Comparison of the Model's Goodness-of-Fit 

When comparing models with three distinct link functions, 

the Akaike Information Criterion (AIC) and the Bayesian 

Information Criterion (BIC) were utilized in the study, 

respectively. The AIC version utilized is minus twice the 

maximal log-likelihood plus twice the parameter counts. The 

likelihood function is also used to calculate the BIC, which is 

linked to the AIC. The best model is the one that has the 

lowest AIC and BIC. 

°u = −2B + 2±                            (42) 

d°u = −2B + ±ln(�)                          (43) 

3.4. Residual Diagnostic Plots 

To help in spotting departures from uniformity, residual 

diagnostics plots were created in R using the DHARMa 

package. The graphic displayed three tests: outlier, 

overdispersion, and the Kolmogorov-Smirnov test. 

3.4.1. DHARMa Residual 

DHARMa package [20] creates readily interpretable 

residuals for mixed models that are standardized between 

zero and one. The resulting residuals are interpreted as in the 

case of linear models. A simulation approach is used to 

produce the standardized residuals in three steps. 

1) For each observation, simulate new response data from 

the fitted model. 

2) Calculate the empirical cumulative density function for 

the simulated observations for each observation, which 

depicts the potential values (and their probability) for 

the observed value for the predictor combination, 

providing the fitted model is valid. 

3) After that, the residual is defined as the value of the 

empirical density function at the observed data value. 

The fundamental advantage of this formulation is that if the 

model is correctly stated, the so-defined residuals always have 

the same known distribution, regardless of the fit model [21]. 

The residuals have 0 and 1 as their minimum and maximum 

values. We should expect asymptotically for a correctly stated 

model uniform distribution of the scaled residuals. The 

residuals can be transformed to a normal distribution for a 

more straightforward interpretation as in linear regression 

models. The residuals are visualized in two plots; 

1) Q-Q-plot, which helps to detect all deviations from the 

fitted distribution. The plot includes three tests: the 

Kolmogorov Smirnov (KM) test, the dispersion test, 

and an outlier test. 

2) Residuals plot indicating residuals against the predicted 

values and simulation outliers. 

3.4.2. Kolmogorov-Smirnov Goodness-of-Fit Test 

The Kolmogorov-Smirnov test was therefore performed to 

determine whether binomial proportions were chosen from 

the beta-binomial distribution in this study. The 

Kolmogorov-Smirnov (K-S) test is based on the empirical 

distribution function. The empirical distribution function is 

defined as follows for N ordered data items e�, eS, ⋯ , e6: 

16 = ?(�)
6 ,                              (44) 

where 
(�) is the number of points less than e�, and which 

denotes that the points less than e� are arranged from least 

to biggest value. When the value of each ordered data point 

is greater than zero, this is a step function that grows by 

1/�. The test statistic for the Kolmogorov-Smirnov test is 

given as: 

� = �/��²�²6 Y³(e�) − ���
6 , �6 − ³(e�)]           (45) 

where F is the beta-binomial theoretical cumulative 

distribution. 

All analyses were implemented in R version 4.1.2 [22]. 

4. Results 

This section presents an application of the beta-binomial 

mixed effect model to overdispersed binomial proportions 

using logit, probit and clog-log link functions. 
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Figure 1. Distribution of binomial proportions for the two input levels in two sites, Thika and Chuka, for the conventional and organic systems. The first row 

describes the distribution of proportions for the farming systems used in Thika at two input levels (Low and High). The second row describes the distribution 

of proportions for the two input levels in Chuka. In a symmetric distribution, the proportions approach one at the same rate; they approach zero, while in 

asymmetric distribution, the proportions tend to accumulate at the edge of the distribution. 

Table 1. Overdispersion parameters for the three-link functions binomial 

generalized linear mixed model. 

Input level Logit Probit Clog-log 

Thika High 2.6321 2.8526 2.5729 

Thika Low 2.8123 3.128 2.6814 

Chuka High 1.2602 1.1919 1.3169 

Chuka Low 2.2051 2.1316 2.236 

Figure 1 shows that binomial proportions were not 

symmetrical as they were not approaching zero and one at the 

same rate. The data showed heavier tails towards zero in all 

input levels. The proportions surpassed 0.5 for Chuka low 

input level suggesting the asymmetric distribution of the 

binomial proportions. 

All three-link functions had overdispersion parameters 

exceeding 1. The parameters appeared very close to each 

other, and in the presence of a significant overdispersion 

parameter, no model could be considered better than the 

other. The majority of the model estimated overdispersion 

parameter >2. 

From Table 2, notably, the year effect was the only 

statistically significant covariate in all input levels; that is; all 

three models reduced stemborer infestation over time in both 

input levels in the two ecological zones, 

Table 2. Parameter estimates and associated p-values (Pr (>|z|) corresponding to the fitted beta-binomial model with different link functions for the binomial 

proportions on stemborer infestation on maize plants. The first column presents the two input levels in two ecological zones, i.e., Thika and Chuka. The 

organic system was the reference factor in each; hence the second column shows a comparison of the organic system to the conventional system, year effect 

and their interaction. Standard errors of the estimates are shown in the brackets. 

 
Logit Probit Cloglog 

Estimate (error) Pr (>|z|) Estimate (error) Pr (>|z|) Estimate (error) Pr (>|z|) 

Thika High 

(Intercept) -1.51 (0.23) <0.0001 -0.94 (0.12) <0.0001 -1.58 (0.22) <0.0001 

(Conventional High) -0.53 (0.35) 0.128 -0.28 (0.17) 0.109 -0.50 (0.33) 0.129 

year -0.21 (0.04) <0.0001 -0.10 (0.02) <0.0001 -0.20 (0.04) <0.0001 

Conventional High: year 0.05 (0.06) 0.407 0.03 (0.03) 0.315 0.04 (0.05) 0.420 

Thika Low 

(Intercept) -1.65 (0.30) <0.0001 -1.05 (0.15) <0.0001 -1.70 (0.28) <0.0001 

(Conventional Low) -0.49 (0.41) 0.2306 -0.20 (0.02) 0.313 -0.49 (0.39) 0.2072 

year -0.19 (0.05) <0.0001 -0.08 (0.02) <0.0001 -0.19 (0.05) <0.0001 

Conventional Low: year 0.01 (0.06) 0.0864 0.04 (0.03) 0.123 0.10 (0.06) 0.0773 

Chuka High 

(Intercept) 0.07 (0.20) 0.710 -0.01 (0.11) 0.960 -0.24 (0.16) 0.147 

(Conventional High) -0.03 (0.29) 0.894 -0.05 (0.16) 0.738 -0.01 (0.26) 0.970 

year -0.37 (0.03) <0.0001 -0.20 (0.02) <0.0001 -0.33 (0.03) <0.0001 

Conventional High: year -0.08 (0.05) 0.187 -0.03 (0.03) 0.273 -0.08 (0.05) 0.146 

Chuka Low 

(Intercept) -0.08 (0.24) 0.737 -0.11 (0.14) 0.454 -0.33 (0.20) 0.0976. 

(Conventional Low) -0.19 (0.34) 0.8270 0.580 -0.11 (0.20) 0.594 -0.17 (0.29) 0.5548 

year -0.28 (0.04) 0.7558 <0.0001 -0.15 (0.02) <0.0001 -0.27 (0.04) 0.7634 <0.0001 

Conventional Low: year 0.004 (0.06) 0.936 0.003 (0.03) 0.924 0.004 (0.05) 0.9407 
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Table 3. Model AIC and BIC corresponding to the different link functions of the beta-binomial mixed-effects model. 

 Link function 
Thika Chuka 

AIC BIC AIC BIC 

High Input 

Logit 673.96 690.16 534.49 549.35 

Probit 673.98 690.18 525.00 539.86 

Clog-log 673.78 689.98 538.44 553.30 

Low Input 

Logit 700.81 717.02 650.22 665.08 

Probit 701.47 717.67 648.75 663.61 

Clog-log 700.56 716.76 650.30 665.16 

 
Akaike information criterion (AIC) and Bayesian 

information criterion (BIC) values were very close in both 

input levels for the two sites. A beta-binomial mixed-effect 

model with a complementary log-log link function had the 

least AIC and BIC values for the Thika site. A model with a 

probit link function presented the least AIC and BIC values 

in both input levels in Chuka. 

4.1. Thika High Input Systems 

 

Figure 2. QQ-plot (left panel) and residual plot (right panel) of three different link functions. QQ-plot detects overall deviations from the expected distribution 

with added tests for correct distribution (KS test), dispersion and outliers. The residuals plot produces a plot of the residuals against the predicted value. Red 

curves indicate significant patterns in the residuals for Thika high input level models. 
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The plot of residuals for the logit and probit link functions 

suggests the presence of overdispersion, p = 0.04 in both 

cases. Kolmogorov Smirnov test showed that Binomial 

proportions were consistent with the beta-binomial model 

with an insignificant p-value of 0.2811, 0.4470, and 0.4539 

for logit, probit, and Clog-log, respectively (Figure 2). There 

was also an indication of poor fit by the two link functions 

(logit and probit), as noted in Dharma residual vs Model 

predictions plots of the respective link functions in figure 2. 

4.2. Thika Low Input Systems 

 

Figure 3. QQ-plot (left panel) and residual plot (right panel) of three different link functions. QQ-plot detects overall deviations from the expected distribution 

with added tests for correct distribution (KS test), dispersion and outliers. The residuals plot produces a plot of the residuals against the predicted value. Red 

curves indicate significant patterns in the residuals for Thika low input level models. 
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The three-link functions do not indicate a poor fit to the 

data. Kolmogorov Smirnov test showed non-significant p-

values in the three cases, suggesting that the data was drawn 

from a beta-binomial model regardless of the link function 

used. Again, there was no presence of overdispersion and 

outliers in all link functions. The complementary log-log link 

function showed a better fit through residual patterns than the 

logit and probit link functions. Residuals distribution 

indicated that logit and probit link functions had a poorer fit 

to the data. 

4.3. Chuka High Input Systems 

All three tests showed a distributional fit for binomial 

proportions to the beta-binomial mixed effect model using 

the three-link functions. Again, complementary log-log 

presented a better fit than logit and probit link functions 

based on the residual patterns. 

 

Figure 4. QQ-plot (left panel) and residual plot (right panel) of three different link functions. QQ-plot detects overall deviations from the expected distribution 

with added tests for correct distribution (KS test), dispersion and outliers. The residuals plot produces a plot of the residuals against the predicted value. Red 

curves indicate significant patterns in the residuals for Chuka high input level models. 
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4.4. Chuka Low Input Systems 

Again, QQ-plot residuals and the attached test showed a 

distributional fit of binomial proportions to the beta-binomial 

mixed effect model. Logit and probit showed that there was a 

significant pattern in the residual. Complementary log-log 

presented a better fit in residual patterns with significant 

pattern in upper quartile only. 

 

Figure 5. QQ-plot (left panel) and residual plot (right panel) of three different link functions. QQ-plot detects overall deviations from the expected distribution 

with added tests for correct distribution (KS test), dispersion and outliers. The residuals plot produces a plot of the residuals against the predicted value. Red 

curves indicate significant patterns in the residuals for Chuka low input level models. 
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5. Discussion 

In this study, we compared the performance of three link 

functions in a beta-binomial mixed effect model for 

overdispersed proportions on stemborer infestation to 

identify the best link function for the data. Overdispersion 

was evident in the data when a binomial generalized linear 

mixed model (GLMM) was used. This excess dispersion 

suggests a greater variance of stemborer infestation 

proportions due to unobserved heterogeneity in the data. For 

example, unobserved factors that could have affected this 

may include using different crops in the farming system over 

the cropping season and pest control intervention. The rule of 

thumb is that overdispersion parameter should be close to 1 

and if greater than 1.10, overdispersion should be modeled 

[23]. The study considered binomial GLMM inappropriate to 

model this data as the model would result in biased parameter 

estimates and underestimated standard errors leading to 

invalid conclusions [24]. 

A beta-binomial mixed-effect model was a better fit for the 

overdispersed stemborer infestation proportions. Many 

studies have demonstrated the superiority of beta-binomial 

distribution in modeling this kind of data from different 

fields. The models was employed to examine the significance 

of variable protein abundance, and the findings revealed that 

it performed better than other models on various datasets in 

terms of false detection rate and true detection rate [25]. The 

research of O. kush on statistical model using beta-binomial 

distribuition and bivariate copulas proposed a model that uses 

beta-binomial distributions for the marginal numbers of the 

positive and true negatives to overcome the challenges 

encountered when meta-analyzing data from studies on 

diagnostic accuracy [26]. 

Regarding the link functions, the clog-log performed better 

than probit and logit link with the beta-binomial mixed-effect 

model. This is not surprising since the data here are 

asymmetric while the probit and logit links are for symmetric 

datasets. Using a symmetric link function when the 

proportions are skewed would be inappropriate [3] and 

asymmetric link functions provide a suitable alternative in 

such cases [11]. A beta-binomial mixed-effects model using 

the clog-log link function, which is asymmetric, fits the 

overdispersed data better for the Thika site according to AIC 

values. Furthermore, Q-Q-plots with three embedded tests 

(Kolmogorov Smirnov test, dispersion test, and outliers test) 

confirmed that there were residual patterns for all the three 

link functions. A slight pattern in residuals indicated good 

reliability that stemborer infestation proportions were 

adequately modelled using a beta-binomial mixed-effect 

model with a clog-log link function [27]. Residual analysis is 

useful to check the fitted model's quality and the underlying 

assumptions made in the model construction. Using the clog-

log link function, the models estimated the year effect as -

0.20, -0.19, -0.33 and -0.27 for conventional high vs organic 

high and conventional low vs organic low systems in Thika 

and Chuka, respectively. A negative sign indicates a 

decrement of stemborer infestation rates over the years, 

probably because of use of biopesticides and intercropping in 

the farming systems. 

6. Conclusion and Recommendations 

From the analysis of overdispersed binomial proportions 

from LTE, it can be concluded that the choice of link 

function is essential. Based on the results of this study, it 

was supposed that complementary log-log link functions fit 

the asymmetric distribution of the response variable better 

than its counterparts. Using the appropriate link function 

results in a superior fit for the beta-binomial mixed-effect 

regression model. Thus, we recommend that 

complementary log-log link function be considered in 

modelling binomial proportions with a left-skewed 

distribution. Navigating these challenges requires 

developing and selecting link functions using data 

modifications to understand model behaviour and guard 

against overdispersed binomial proportions. Link functions 

must be evaluated holistically with a diverse set of model 

diagnostics to avoid selecting and relying on non-fitted 

models that do not properly describe pest incidence over a 

long time in incipient areas of establishment and spread 

invasion. Our study suggests that incidence and background 

data modifications should be implemented when modelling 

native species to minimize model overfit and spatial biases. 

Finally, interpretation of these link functions as the 

description of a species' incidence on long-term farming 

systems should be done with caution and include additional 

sources of evidence beyond the current approach used in the 

present studies. However, users of long-term species 

incidence data need to incorporate explicit consideration of 

model discrimination, model fit and model complexity into 

their decision-making processes if they are to build 

biologically realistic models. 
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