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Abstract: Surgical resection only remains the standard choice for the treatment of early-stage non-small cell lung cancer 
(NSCLC) patients. Preliminary studies suggest that the application of adjuvant chemotherapy with surgery (ACT) is associated 
with a better prognosis for more severe NSCLC patients compared to those who only underwent surgical resection. However, 
at an individual level, not all patients may benefit from ACT. Given the well-known adverse effects and toxicity of ACT, 
finding the patients that are most likely to benefit from ACT is paramount. Thus, the purpose of this research is to utilize gene 
expression and clinical data from lung cancer patients to develop a statistical decision support algorithm to find predictive 
genomic biomarkers and identify subgroups of patients who benefit from ACT. Cox regression models are trained using a 
randomized controlled trial gene expression data from the National Center for Biotechnology Information (NCBI) utilizing 
explicit treatment interaction terms. To handle high dimensions inherent in gene expression data, a regularized Cox regression 
model with lasso penalty is applied to find the most significant interacting markers. Risk scores are estimated from the 
proposed model and are used to stratify patients into a high risk or low risk group respective to ACT treatment. After applying 
the model to an independent validation genomic data set, we show that patients who underwent the recommended treatment 
according to their risk group estimated by our proposed algorithm exhibit a slightly higher survival rate than those who do not. 
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1. Introduction 

Lung cancer is not only among the most widely diagnosed 
types of cancer (only falling second to breast cancer, 2.21 
million cases vs. 2.26 million cases in 2020), but it also leads 
in deaths with 1.80 million in 2020 [1]. The most common 
type of lung cancer is non-small cell lung cancer (NSCLC), 
which accounts for 84% of diagnoses. Although each stage of 
cancer has its general, standard treatment, it is of utmost 
importance to consider treatment decisions on a patient-by-
patient basis in order to optimize patient survival rate. In recent 
years, much attention has been ascribed to studying genomic 
data and identifying genomic markers that help to predict how 
patients will respond to various treatment options. This 

information allows doctors to make more educated treatment 
decisions based on the individual, ultimately increasing overall 
patient outcome and maximizing the efficacy of the treatment. 

Currently, the stage of a lung cancer patient is arguably the 
most important factor in deciding what treatment should be 
undertaken. Surgery only is generally recommended for 
patients with Stage I lung cancer, while adjuvant 
chemotherapy treatment after surgery (ACT) is generally 
recommended for patients with Stage II or III lung cancer [2]. 
There are several factors like tumor size for Stage I patients or 
comorbidities that may change this recommendation. 
However, a recommendation of chemotherapy for Stage I 
patients continues to be controversial. Although the value of 
adjuvant chemotherapy has become widely accepted as a result 



 International Journal of Data Science and Analysis 2021; 7(3): 60-68 61 
 

of clinical research from the past few decades, adjuvant 
chemotherapy elicits devastating side effects on many patients. 
A vast majority of patients in the JBR. 10 study experienced 
side effects like neutropenia (88% of patients), fatigue (81%), 
nausea (80%), and neuropathy (48%). Similarly, patients in the 
ANITA study experienced neutropenia (92%) and grade 3-4 
nausea/vomiting (27%) [3, 4]. The prevalence and severity of 
the side effects of chemotherapy warrant further research into 
the use of genomic markers—specifically, to predict how an 
individual will respond to adjuvant chemotherapy. 

With the development of genetics research and the 
increasing number of publicly available data sets in recent 
years, researchers now have better access to the tools 
necessary to identify such genomic markers and improve 
treatment efficacy. These resources have brought about the rise 
of bioinformatics and computational biology. The development 
of these fields has made way for medical strides not only in 
terms of lung cancer but also in various other illnesses and 
diseases. Specifically, the use of biomarkers to improve patient 
outcomes has continued to draw significant interest in recent 
years. For instance, Ibrahim et al. [5] established that the 
identifying of biomarkers is expected to be critical in 
continuing to improve the care of heart failure patients. 
Although researchers have made some progress in the use of 
biomarkers, it is clear that there is still much progress to be 
made. While multiple biomarkers that are significantly 
correlated to cardiovascular risk have been identified, their role 
in improving risk prediction still remains limited [6]. In terms 
of NSCLC, some potential biomarkers have been identified in 
research, but the potential use of them in the management of 
lung cancer patients requires further exploration [7]. The 
promising future of genomic markers and their potential to 
create profound impacts in improving patient care make them 
increasingly important to investigate. 

A goal of this study is to create a prognostic gene signature 
by identifying a set of treatment-related genomic biomarkers. 
Previous studies have had similar aims; For instance, He et al. 
[8] identified an 8-gene signature in 2019, and Zuo et al. [9] 
identified a 6-gene signature in 2019 for NSCLC. Similarly, 
Boutros et al. [10] selected and validated a 6-gene signature, 
and noted that there are hundreds of thousands of other 
verifiable NSCLC prognostic signatures. The existence of so 
many verifiable signatures due to differing statistical methods 
serves to show why there is often a lack of overlap from study 
to study. The aforementioned studies, for instance, have 
minimal overlap in their identified gene signatures.  

Gene signatures themselves have many important 
applications. For cancer, gene signatures aid physicians in 
predicting recurrence and the speed at which cancerous cells 
can grow and spread in an individual’s body. They may also be 
able to predict treatment efficacy so the optimal treatment plan 
can be utilized, in addition to helping diagnose disease and 
accurately determining patient prognosis. These applications 
make gene signatures critical for the improvement of overall 
patient care. 

Moon et al. [11, 12] previously investigated the 
identification of a gene signature with the goal of 

recommending treatments that would lead to better survival 
outcomes. They built two separate models by splitting their 
training set into two smaller sets based on treatment. However, 
the splitting of the larger data set meant that the models were 
built on smaller training sets, which may result in the selection 
of non-optimal genomic markers. Their prediction algorithm 
also resulted in inconclusive recommendations for certain 
patients because the two model recommendations had not 
agreed with each other. 

In this paper, we propose using a lasso-regularized Cox 
regression model with treatment interaction in order to 
estimate the risk of taking ACT, thereby minimizing the 
toxicity and improving patient survival. Specifically, if the risk 
of adjuvant chemotherapy is lower than the risk of surgery 
only, ACT is recommended, and vice versa.  

In Section 2, the training data and a separate validation 
dataset are described and preprocessed. Methodologies used in 
this paper are illustrated in Section 3. Results are reported in 
Section 4. We conclude our findings in Section 5.  

2. Data Description and Preparation 

For the training set, we utilized a 442-patient data set [13]. 
The data set was considered to be the largest publicly available 
microarray data set with significant lung adenocarcinoma 
annotation. The data set utilized TN staging, which was 
inconsistent with the stages of I, II, and III used in the 
validation set. For this reason, the TN stages from the raw data 
of the training set were converted to stages I, II, and III using 
the American Joint Committee on Cancer’s Lung Cancer 
Staging. pN0pT1 and pN0pT2 were converted to stage I; 
pN0pT3, pN1pT1, and pN1pT2 were converted to stage II; 
pN0pT4, pN1pT3, pN1pT4, pN2pT1, pN2pT2, pN2pT3, and 
pN2pT4 were converted to stage III. These conversions were 
are denoted in Table 1. After the removal of 56 patients due to 
missing data points, it was found that 244 were stage I patients, 
77 were stage II patients, and 65 were stage III patients. The 
raw data can be downloaded using accession number 
GSE68465 on the National Center for Biotechnology 
Information (NCBI) website 
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE68
465). 

Analyzing the training data using the Kaplan-Meier 
estimator, we found that there was a statistically significant 
difference in the survival rates of the patients who underwent 
surgery only and the patients who underwent adjuvant 
chemotherapy (�=0.00019, Figure 1). Those who underwent 
surgery only had a median survival time of 6.31 years, while 
those who underwent adjuvant chemotherapy had a median 
survival time of 3.77 years. The data itself showed an adverse 
effect on ACT that did not prolong patient survival. This 
motivated our paper to develop an algorithm to select a 
subgroup of patients who could benefit from ACT. 

We used a smaller, 133-patient data set for the validation set 
[14]. The data set was a randomly selected subset of the data 
from the JBR. 10 trial, which was originally composed of 482 
patients [3]. Out of 133 patients, 62 underwent surgery only 
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and the remaining 71 underwent adjuvant chemotherapy. The 
raw data can be downloaded using accession number 
GSE14814 on the NCBI website 
(https://www.ncbi.nlm.nih.gov/geo/query/ac 
c.cgi?acc=GSE14814). Information for the two sets is 
displayed in Table 2. 

Affymetrix microarrays have become a popular means of 
performing gene expression analysis as they are capable of 
simultaneously detecting the expression of thousands of genes. 
Because of this ability, they have become a critical tool in the 
field of genomics. Microarrays themselves are composed of 
microscopic spots imprinted on microscopic slides. Every 
microscopic spot on the slides corresponds to some known 
DNA gene or sequence. Genes on a GeneChip are represented 
by probe sets. 

Raw microarray data must go through preprocessing before 

analysis. Typically, they first undergo background correction, 
followed by normalization, and finally summarization. Each 
step has a specific purpose; Background correction allows for 
the reduction of the effect of local artifacts and other noise. 
The process helps with the elimination of spatial heterogeneity 
or non-specific binding effects, but may cause issues like 
corrected intensities with negative value [15]. The 
normalization process helps to reduce bias and error that may 
result from how the data is acquired, such as differences in 
technology. Reducing such bias allows measurements from 
one array to be comparable to measurements from another 
array. The main purpose of summarization is to summarize 
probe readings in a singular number as a concise means of 
representing gene expression. These three steps of 
preprocessing were performed on the raw training and 
validation data using Bioconductor’s “affy” package in R. 

 

Figure 1. Survival difference between patients who underwent OBS (dashed; top) and the patients who underwent ACT (solid; bottom) in the training data. 

Table 1. Conversion table for TN staging to stages I, II, and III. 

Lung Cancer TN to Stages of Cancer Conversion 

 
TN Stages 

Stage I 01*, 02 
Stage II 03, 11, 12 
Stage III 04, 13, 14, 21, 22, 23, 24 

*�� denotes pN�pT�. 

Table 2. Side-by-side patient information for training set and validation set. 

 
Training Set (� � ���) Validation set (� � 	��) 

Treatment Received 
  

Adjuvant chemotherapy (ACT) 65 71 
Surgery only (OBS) 321 62 
Age 

  
Less than 65 176 87 
Older than or equal to 65 210 46 

 

3. Methods 

Survival analysis is a statistical methodology for analyzing 

the expected duration of time until an event of interest 
occurs, such as death. A main objective of survival analysis 
may be to estimate the survival probability that a patient can 
survive for a certain period of time, say five years. In 
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addition, survival analysis can address survival differences 
between treatment groups—in our example, OBS and ACT. 
Furthermore, important genomic biomarkers that can prolong 
patients’ survival can be found in survival analysis by using 
the Cox proportional hazard model [16]. 

The Cox proportional hazards model is a type of 
regression model used in survival analysis for investigating 
the relationship between patients’ survival and predictor 
variables, such as probe sets in microarray data. For a subject 
, denote �
 the value of the covariate vector �. Let �
  and �
 
denote the underlying survival time and a censoring time, 
respectively. Let ��
 , �
 , �
�  be the survival data, where �
 � min	{�
 , �
}  and �
 � ���� !�" , and where �
  and �
  are 
conditionally independent given �
.  We want to model a 
relationship between � and � by assuming a function ℎ�∙� is 
functionally related to �. 

Let ℎ�%|�� denote the hazard function for a subject with 
covariate � such that 

ℎ�%|�� � ℎ'�%� ∗ )���, 
where ℎ'�%� is a function of time %, but not �, and )��� is a 
function of �, but not %. The Cox proportional hazard model 
is a special case such that 

ℎ�%|�� � ℎ'�%� ∗ exp�-.�� � ℎ'�%� exp /0-
1

2


34
5. 

In Cox regression, the regression coefficients are estimated 
by maximizing a quantity known as the partial likelihood 
rather than a full likelihood. In a partial likelihood, we utilize 
the probability of subjects (patients) who experience an event 
of interest rather than utilizing the whole data. Thus, patients 
who are censored contribute only to the risk set instead of 
contributing to the partial likelihood. Therefore, the 
likelihood takes the form 

ℒ2�-� �78

9


34
, 

where :  represents the number of failure times, and 8
 
represents a partial likelihood comparing the risk of the failed 
subjects with 1
 to the risk given all other 1
’s for subjects in 
the risk set at time %
 . Cox (1972) proposed the partial 
likelihood to estimate the parameters - 

8�-� �7; exp�-.�
�∑ exp=-.�>?>∈A�B��
CD�

E


34
, 

where F�%
�  is the risk set at time %
  denoting the set of 
individuals who are at risk for failure at time %
 	�16". The 
parameters -  are estimated by maximizing the partial 
likelihood 8�-� by a Newton-Rapson technique. 

In microarray data, the number of covariates is larger than 
the number of subjects. This type of data easily leads to 
overfitting and high variance problems. In this case, it is 
necessary to consider variable selection. We take the lasso 
approach for variable selection methods [17]. Later, the least 

squares regression models were extended into the context of 
Cox models by minimizing the partial likelihood with the 
lasso penalty [18]. The lasso estimates for the Cox model are  

-IJKLLM � minN 8�-�, 	subject	to	0V->V
2

>34
< X, 

where X is a specified penalty parameter and � is the number 
of covariates. The nature of the lasso constraint causes it to 
shrink irrelevant coefficients and takes out variables having 
coefficients that are exactly zero. As a result, it 
simultaneously reduces the estimation variance while 
providing a final interpretable model with a feasible set of 
variables. To minimize the bias in the estimation of 
parameters -I  and to make a sparse model, the parameter X is 
chosen with the one having the minimum standard error in a 
leave-one-out cross-validation (LOOCV) due to the relatively 
small sample size. The LOOCV is a standard cross-validation 
approach that sets aside one observation as the test set and 
fits the model on the remaining observations in the training 
sample. Then, the model evaluation is carried out using the 
left-out test sample. This process repeats Y times, where Y is 
the sample size. This procedure is implemented using the R 
“glmnet” package to estimate the penalized coefficients.  

Our goal is to predict the best treatment option (either 
ACT or OBS) for individual patients to prolong survival. 
Based on the lasso approach, we have reduced down to a 
feasible set of markers that are highly correlated with patient 
survival. To measure the treatment effect on the survival 
between OBS and ACT, a modified Cox model is trained as  

ℎ�%|�� � ℎ'�%� exp�-4Z)[ + ].�� ∗ ^��, 
where � includes stage of patients and the selected probe set 
by the lasso, and ^ is the treatment vector that includes either 
ACT or OBS depending on which one the patients in the 
training set have taken.  

After training the model, the estimated parameters ]_  are 
used to find the treatment risk scores -4̀Z)[ + ]_.�, that is, a 
risk with respect to the ACT treatment, in order to make 
predicted treatment recommendations for individual patients. 
For a future individual patient, the model examines the risk 
with OBS and ACT in order to stratify the individual patient 
into a low-risk and high-risk group. If a patient has a lower 
ACT risk, the model recommends ACT treatment for the 
patient. However, if ACT risk is higher, the model 
recommends OBS treatment for the patient. 

To evaluate the proposed classification model, the separate 
test set is used to classify patients into two groups: one group 
of patients who are concordant with the model 
recommendation and the other group of patients who are 
discordant with the model recommendation [14]. This can be 
done by examining the two risk scores from the viable 
treatments of ACT and OBS. Then, the patient survivals from 
the group concordant with the model recommendation and 
the other discordant with the model recommendation are 
compared via the Kaplan-Meier survival estimator. 
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4. Results 

The regularized Cox regression model is implemented 
using the training set in order to select a feasible set of probe 
sets. First, leave-one-out cross-validation (LOOCV) is 
performed for the estimation of a lasso penalty tuning 
parameter X . The lasso penalty estimate with minimum 
standard error XIa
E is used to select genomic markers for the 
predicted treatment recommendation. Figure 2 displays the 

elbow chart showing the standard error in the estimation of X. 
Table 3 displays the genomic markers that were selected 

by the lasso penalty using XIa
E. All of the selected probe sets 
showed a statistically significant treatment effect. These 21 
genomic markers, in addition to patient age and clinical 
stage, were used for the estimation of the risk of taking ACT 
in the proposed regularized Cox regression model. Based the 
estimated risk, the proper treatment recommendation (either 
ACT or OBS) was made. 

 

Figure 2. The standard error is at a minimum at the left vertical line (from where the bc) X value is extracted and	X is calculated), and the right vertical line 
shows the standard error within one standard deviation of the minimum standard error. 

Many of the selected genes in Table 3 have previously 
been shown to be related to NSCLC. Recently published 
studies suggest that CDC42 and ETV5 are associated with 
NSCLC oncogenesis [19, 20]. CSRP1 was found to be one of 
six genes consistently in the top genes for aberrant 
expression for NSCLC [21]. FAM164A has been previously 
identified as part of a 12-gene signature for lung cancer [22]. 
FAM117A was identified as having a possible association 
with lung cancer progression [23]. FOSL2 expression levels 
were found to be associated with reduced survival and 
metastases for NSCLC [24]. A recent study also found that 
MFHAS is important both for the progression and initiation 
of squamous cell lung cancer, one type of NSCLC [25]. 
PLEK2 was also demonstrated to be responsible for the 
degradation of SHIP2, which thereby allows PLEK2 to 
regulate vascular invasion and metastasis for NSCLC [26]. It 
has also been suggested that lower expression of ZNF185 is 
often a feature of lung tumors and may play a role in lung 
carcinogenesis [27]. Higher expression of FZD2 was found 
to correlate with longer survival and better prognosis [28]. 
PTPN12 expression for NSCLC patients was previously 
found to be a prognostic biomarker, where higher PTPN12 
expression in tumors suggested longer survival [29]. In a 
recent study, TMPRSS11E was shown to promote the growth 
of lung cancer by strengthening glycolytic metabolism and 
the exportation of lactate [30]. CPM was found to display 

increased activity levels in lung cancer patients, specifically 
in the bronchoalveolar lavage [31]. 

For the predicted treatment recommendation for each 
individual patient, the risk score from the proposed model 
was used to recommend ACT or OBS (surgery only) based 
on which treatment option had a lower risk score for the 
individual. Specifically, patients who had a lower risk score 
for taking ACT than surgery only were recommended ACT 
by the proposed model and vice versa. Applying this method 
to the training data, 89 patients were recommended ACT, 
while the remaining 297 patients were recommended OBS. 
The patients were followed up whether they had the 
recommended treatment by the model for the purpose of 
survival analysis: one group in which the patients followed 
the recommended treatment and the other group in which the 
patients did not follow the recommended treatment. 
Accordingly, 268 patients who followed the recommended 
treatment were classified into the first group; 118 patients 
who did not follow the recommended treatment were 
classified into the second group. A log-rank test indicated 
that those who followed the treatment recommendation 
displayed a significantly higher rate of survival than those 
who did not follow the treatment recommendation ( � <0.0001; Figure 3) as we expected. Those who followed the 
treatment recommendation had a median survival of 7.14 
years, while those who didn’t follow the treatment 
recommendation had a median survival of 3.33 years. 
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The method was also employed for the JBR. 10 validation 
data—an unseen data set. Out of the 133 patients in the 
validation set, 86 patients were recommended ACT, while the 
other 47 patients were recommended OBS by the proposed 
model. When the treatment recommendations were compared 
to the actual treatment that each individual patient 
underwent, the results indicated that 68 patients followed the 
recommended treatment and 65 patients did not follow the 
recommended treatment. A significantly higher survival rate 
for the group of patients who followed the recommended 
treatment was clearly evident when comparing the two 
survival probabilities in Figure 4 (� � 0.0056). Those who 

followed the treatment recommendation had a median 
survival of at least 9.03 years, while those who did not follow 
the treatment recommendation had a median survival of 6.66 
years. Because these results were obtained on the validation 
set, which the model was not trained on, the results provided 
supporting evidence of the model efficacy in recommending 
a proper treatment right after surgery for NSCLC patients. 
We could conclude that patients who followed the treatment 
recommendation provided by our proposed model could have 
survival benefits compared to patients who did not follow the 
recommendation by the model. 

 

Figure 3. Survival difference between patients who followed the treatment recommendation (dashed; top) and the patients who did not follow the treatment 

recommendation (solid; bottom) from the proposed regularized Cox regression model in the training data. 

 

Figure 4. Survival difference between the patients who followed the treatment recommendation (dashed; top) and the patients who did not follow the treatment 

recommendation (solid; bottom) from the proposed regularized Cox regression model in the JBR. 10 validation set. 
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Table 3. Genomic markers selected by the Cox regression regularized by the lasso penalty. 

Probe Set/Covariate Gene Symbol Gene Name 

208728_s_at CDC42 cell division cycle 42 
200621_at CSRP1 cysteine and glycine-rich protein 1 
205308_at FAM164A family with sequence similarity 164, member A 
206269_at GCM1 glial cells missing transcription factor 1 
203348_s_at ETV5 ETS variant transcription factor 5 
218885_s_at GALNT12 polypeptide N-acetylgalactosaminyltransferase 12 
218498_s_at ERO1A endoplasmic reticulum oxidoreductase 1 alpha 
221249_s_at FAM117A family with sequence similarity 117 member A 
209460_at ABAT 4-aminobutyrate aminotransferase 
218880_at FOSL2 fos-related antigen 2 
207629_s_at ARHGEF2 rho guanine nucleotide exchange factor 2 
213457_at MFHAS1 malignant fibrous histiocytoma amplified sequence 1 
218644_at PLEK2 pleckstrin 2 
203585_at ZNF185 zinc finger protein 185 with LIM domain 
210220_at FZD2 frizzled class receptor 2 
220183_s_at NUDT6 nudix hydrolase 6 
202006_at PTPN12 Tyrosine-protein phosphatase non-receptor type 12 
202801_at PRKACA protein kinase cAMP-activated catalytic subunit alpha 
220431_at TMPRSS11E transmembrane serine protease 11E 
206496_at FMO3 flavin containing dimethylaniline monoxygenase 3 
206100_at CPM carboxypeptidase M 

 

5. Conclusion 

The main goal of this research was to evaluate early-stage 
lung cancer patients on an individual basis and recommend 
the treatment that optimizes patient outcome. This was 
achieved by first identifying a set of treatment-related 
biomarkers and then using these biomarkers (along with age 
and stage) to build a Cox regression model to provide a 
treatment recommendation. The training set [13] consisted of 
442 patients, of which 56 patients were removed due to 
missing data points, leaving 386 patients: 244 stage I patients, 
77 stage II patients, and 65 stage III patients. The data set 
originally used TN staging for cancer stage, but they were 
converted to clinical cancer stages I, II, and III to maintain 
consistency with the validation set. The JBR. 10 validation 
set consisted of 133 patients, of which 62 underwent surgery 
only and 71 underwent adjuvant chemotherapy [14]. 

The raw training and validation sets were preprocessed 
before being statistically analyzed. The necessary steps of 
background correction, normalization, and summarization 
processes were conducted using Bioconductor’s “affy” 
package in R. After the data was preprocessed and extra rows 
and missing data were removed, the “glmnet” package in R 
was used to perform LOOCV with the lasso regularization 
method on the training set. The lambda value with minimum 
standard error was extracted from the cross-validation result 
and used to identify 29 corresponding covariates. Of the 29 
covariates, 8 were removed because they did not significantly 
contribute to the model, leaving 21 covariates. The 21 
remaining treatment-related covariates, along with age and 
stage covariates, were used to build a final Cox regression 
model with treatment interaction terms. For each individual 
patient, a treatment was recommended based on the 
estimated treatment risk from the model. If ACT risk was 
lower than OBS risk, then ACT was recommended and vice 

versa. Patients were then classified into a group that followed 
the recommendation and a group that did not, and their 
survival difference was compared using the Kaplan-Meier 
survival estimates. Based on the results from the validation 
data, we may be able to conclude that if patients followed our 
predicted treatment recommendation, they could live longer. 
Many of the 21 selected genomic biomarkers from the 
proposed algorithm have been previously shown to be related 
to NSCLC, such as their expression levels being correlated 
with survival outcome or having been previously identified in 
a gene signature. 

For the training set, the model recommended ACT to 89 
patients and recommended OBS to the remaining 297 
patients. Out of the total 386 patients, 268 patients followed 
either ACT or OBS treatment recommendation, while the 
remaining 118 patients did not follow the recommended 
treatment. The Kaplan-Meier survival estimates 
demonstrated that those who followed the recommendation 
from the model had a significantly higher survival rate 
(median survival of 7.14 years) than those who did not 
(median survival of 3.33 years) (� < 0.0001). These results 
indicate that the model performs effectively on the training 
data as expected. 

For the validation set, the model recommended ACT to 86 
patients and OBS to the remaining 47 patients. Out of the 133 
patients in the set, 68 patients followed the recommended 
treatment and 65 patients did not. Upon comparing the two 
groups, the Kaplan-Meier survival estimates indicated that 
those who followed the treatment recommendation had a 
significantly higher survival rate (median survival of at least 
9.03 years) than those who did not (median survival of 6.66 
years) ( � = 0.0056 ). The results on the validation set 
demonstrated the validity of the individualized treatment 
decisions for NSCLC patients. 

We believe that our proposed model may aid physicians in 
making more informed treatment decisions for NSCLC 
patients. In particular, the model may help to improve patient 
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outcomes and prognosis by recommending the treatment that 
best suits each of the patients given their unique set of genes, 
age, and stage. Future research may consider immunotherapy 
as an additional treatment option. Immunotherapy has shown 
much promise in recent years, and it is believed that it will be 
an increasingly important and viable treatment option for 
cancer patients in the future. Research indicates that 
personalized combination therapy will be a promising cancer 
treatment strategy. Building a model with this additional 
treatment possibility would be futuristic and may be of great 
benefit to physicians [32]. 
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