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Abstract: In modelling count data, the use of least square regression models suffers several methodological limitations and 

statistical properties in instances of discrete, non-negative integer count of a dependent variable. Unlike the classical regression 

model, count data models are non-linear with many properties of the response variable relating to discreteness, non-linearity and 

deal with non-negative values only. A good starting point for modelling count data is the Poisson regression model since it lends 

itself well with the nature properties of count data. However, the limitation of equi-dispersion renders it inappropriate for 

modelling over-dispersed data. Negative Binomial regression model has been widely used and considered as the default 

regression model for over-dispersed count data. This model is a modification of Poisson regression model and though widely 

used, it might not be the best model for over-dispersion and other models have been found to perform better. Over-dispersion in 

this study was defined relative to the Poisson model. This study models over-dispersed count data using discrete Weibull 

regression model and artificial neural network model with a median neuron in the hidden layer. After fitting the two models on 

simulated data and real data, the artificial neural network model outperformed the discrete Weibull regression model. Application 

on data set from German health survey gave RMSE of DW regression model as 69.0668 and 35.5652 for the artificial neural 

network. 
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1. Introduction 

Count data is defined as the number of times an event 

occurs within a period of time that is fixed. In modelling, the 

use of least square regression models suffers several 

methodological limitations and statistical properties in 

instances of discrete, non-negative integer count of a 

dependent variable [1]. Unlike the classical regression model, 

count data models are non-linear with many properties of the 

response variable relating to discreteness, non-linearity and 

deal with non-negative values only. A good starting point for 

modelling count data is the Poisson regression model since it 

lends itself well with the nature properties of count data. Some 

examples of such data are the number of road accident deaths, 

the number of patents awarded to a firm, the number of dengue 

fever cases which is restricted to a single digit or integer with 

low number of events and the number of times a doctor visits a 

patient [2]. 

Reference [3] indicated that for modelling count data, 

Poisson regression model has more merits over the 

conventional linear models. However, Poisson regression 

model still has one potential problem. This is the property of 

equi-dispersion, that is the assumption of equality of variance 

and mean. When this property is violated, for instance, the 

variance of the observed counts exceeds the mean, an 

over-dispersion will occur. When the variance of the observed 

counts is lower than the mean, then under-dispersion occurs. 

Under-dispersion are experienced on rare occasions and this 

often happens when the sample mean is low [4]. Failure to 

control for dispersion will lead to inconsistent estimates, 

inflated statistics and biased in standard error. Hence with 

count data modelling, after the development of Poisson 

regression model, one proceeds with the analysis of correcting 

for dispersion if it exists. 
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Negative Binomial (NB) regression has been widely 

considered as the default choice for data that are 

over-dispersed relative to the Poisson regression. This is 

because it has a closed form equation and the mathematical 

relationship between the mean and variance is easy to 

manipulate [5]. However, NB regression count cannot deal 

with data that are under-dispersed relative to the Poisson 

distribution. These cases of under-dispersion can arise in 

various applications where the data are preprocessed for 

confidentiality [6]. There have been attempts to extend the 

Poisson based models to include under-dispersion such as the 

generalized Poisson regression models [7], 

Conway-Maxwell-Poisson regression [8], extended Poisson 

process models [9] or hyper-Poisson regression models [10]. 

These models are all modifications of the Poisson model and 

have been proved to be quite complex and computationally 

intensive in practice [11]. This study looked at Discrete 

Weibull (DW) regression and Artificial neural network (ANN) 

models. Reference [12] presents the DW regression model. 

The motivation behind this comes from the vital role played 

by the continuous Weibull distribution in survival analysis of 

failure time studies. This study evaluates the performance of 

DW regression with comparison to ANN model 

2. Literature Review 

Poisson distribution is the classical and first choice in 

modelling count data [2]. Even though the Poisson model is 

widely considered as the basic model in analyzing count data, 

the reliance of this model on a single parameter limits its usage 

on real data. This arises due to the property of equivalence in 

variance and mean being violated. 

Negative Binomial model is suitable for modelling 

overdispersion. This is because the NB model relaxes the 

assumption of equi-dispersion of Poisson regression by 

introducing a dispersion parameter that allows the variance 

to exceed the mean. The theoretical variance of the NB is 

always greater than its mean hence the reason for its 

widespread usage for modelling over-dispersed count data. 

The NB model has been applied by many researchers for 

example [1, 13-15] and many more. This model is the most 

used model in crash frequency modelling. However, the 

model has its disadvantages, mostly is the inability to 

model under-dispersed data and the problem of estimating 

the dispersion parameter when the data has a low sample 

mean and small sample sizes [16, 17]. This limitation 

makes it necessary to have models that can cope with the 

cases of under- dispersed data relative to the Poisson 

distribution 

Reference [18] proposed gamma model for count data to 

model over- dispersed and under-dispersed count data. 

Reference [19] used this distribution to analyze crashes 

collected at RHX in South Korea. They found that the gamma 

count model provides a good statistical fit for the 

railway-highway crossing crash data under study. This model 

performs well statistically but it is a dual-state model. 

Although the model is able to provide a good fit, its 

assumptions limits its applicability. Where observations for a 

time t-1 will affect the observation at time t, the gamma model 

assumes that observations are not independent. 

3. Methodology 

3.1. Dispersion for Count Data 

Dispersion for any data can be described as the variability 

or spread of the data. Reference [2, 20] indicates that 

dispersion in count data should be defined in relation to a 

specific distribution. In this context, the variance ratio (VR) 

can be defined as the ratio between the observed variance from 

the data and the theoretical variance from the model fit. This 

can be written as; 

�� = �����	�
 	��
����
�������
��� 	��
����            (1) 

Modelling count data exhibit different types of dispersion. 

Data is over-dispersed when the observed variance is greater 

than the expected variance specified by the fitted model. 

Under-dispersion describes a case where the observed 

variance is less than the theoretical variance. When the 

observed variance and theoretical variance are equal, the data 

does not show any dispersion and can be referred to as 

equi-dispersed. 

Furthermore, dispersion of count data can be defined in 

relation to the Poisson model. Therefore, it is common to refer 

to these data as being dispersed relative to Poisson. In this case 

variance of the model is estimated by the sample mean. Thus, 

dispersion relative to the Poisson refers to cases where the 

sample variance (observed variance) is greater than sample 

mean (theoretical variance) for overdispersion, equal for 

equi-dispersion and smaller for under-dispersion. From this 

definition, dispersion of a dataset can therefore be identified 

with regard to a dispersion coefficient (Dip). This is defined as 

the ratio of the variance to the mean; 

��� = ��
�                   (2) 

From this, data was considered over-dispersed relative to 

the Poisson when Dip > 1, equi-dispersed when Dip=1 and 

under-dispersed when Dip < 1. Dispersion has frequently 

been defined in literature using the variance-to-mean ratio 

given above. Specifically, dispersion relative to the Poisson 

distribution is found when the variance is greater or less than 

the mean [2]. Failure to account for dispersion in modelling 

count data may lead to biased parameter estimation and hence 

lead to false conclusions and decisions. This study considered 

the Dip when checking for dispersion. 

3.2. Discrete Weibull (DW) Distribution and Regression 

Model 

3.2.1. DW Distribution 

Roy [21] introduces the cumulative distribution of DW 

distribution. If Y follows a type 1 DW distribution, then the 

distribution of Y is given by; 
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���; �, !" = #1 − ��&'(") , *+, � = 0, 1, 2, …0, +0ℎ2,3�42      (3) 

and the probability mass function is given by; 

���; �, !" = #�&) − ��&'(") , *+, � = 0, 1, 2, … 0, +0ℎ2,3�42   (4) 

where the parameters β > 0 and 0 < q < 1. The parameter q 

gives the probability of obtaining a non-zero response since f 

(0)=1−q. The DW distribution is connected to other 

well-known distributions. These include; [22] discrete Releigh 

distribution with β=2 and q=0. The geometric distribution, is 

a special case of DW distribution, with q=1−p and β=1. The 

variance the geometric distribution is always greater than its 

mean. Therefore, regardless of the value of q, DW distribution 

with β=1 is a case of overdispersion relative to Poisson 

regression. Actually, when β=1 and q=e
−λ

, the distribution is 

the discrete exponential distribution introduced by [23]. The 

parameter β can be considered as controlling the range of 

values of the variable, that is, controls the skewness of the DW 

distribution. 

Moments and Quantiles 

For the DW distribution, the first two moments are given as; 

5�6" = 7 = ∑ �&)9&:(            (5) 

5�6;" = 2 ∑ ��&)9&:( − 5�6"         (6) 

The moments have no closed form expressions but 

numerical approximations can be obtained on a truncated 

support [24]. 

Equations (5) and (6) show that the cases of the mean are 

greater than the variance and the mean being lower than the 

variance are possible. This makes the DW distribution suitable 

for overdispersion and under-dispersion. 

DW distribution has a nice property in that its τ (0 < τ < 1) 

quantile, that is the smallest value of y for which F(y) ≥ τ, has a 

closed form expression which is given by; 

<�=" = >?@AB�(CD"
@AB�E" F

G
) − 1H             (7) 

with I. K representing the ceiling function. Given that Y is 

non-negative and the cumulative density function is 1 −q at 0, 

the quantile is defined only for τ ≥ 1 −q. 

This is in contrast to the Poisson and Negative Binomial 

regression, which do not have a closed form expression for 

quantiles. 

The median of a DW distribution is considered a special 

case and is given by; 

<�0.5" = >?@AB�;"
@AB�E"F

G
) − 1H             (8) 

Hence the quantiles of a DW distribution are given by 

simple analytical formulae. 

Parameter Estimation 

Given a sample y1, y2,..., yn from a DW distribution, the 

log-likelihood can be written as; 

M+NO = ∑ M+N ?�&P) − ��&P'(")FQ
C(         (9) 

From this it is easy to obtain the maximum likelihood 

estimators (MLE) of q and β by maximizing the log-likelihood 

directly using any standard non-linear optimization tool. 

3.2.2. DW Regression Model 

The advantageous property of the DW distribution is 

exploited within a regression context, where interest is to 

model the relationship between a count response variable and 

a set of covariates. 

Model Formulation 

DW regression model for count data is introduced in 

analogy with the continuous Weibull regression, which is 

mostly used in life-time modelling and survival analysis. The 

distribution function of a continuous Weibull distribution 

function is given by; 

���; R, !" = 1 − 2CS&) , � ≥ 0          (10) 

with scale parameter q and shape parameter β. 

The parameter q of a DW distribution is equivalent to e−λ 

in the continuous case. Reference [25], Weibull regression 

imposes a log link between the parameter λ and the predictors. 

DW regression can be introduced through the parameter q. 

From (9) with = = (
; , the median of Y denoted by M 

satisfies; 

log�X + 1" = (
Z log �log�2"" − (

Z log �−log ��""    (11) 

To introduce a DW regression model, assume for i=1, 2,..., 

n, the response Yi has a DW conditional distribution f (yi, q(xi), 

β|xi), where q(xi) is the DW parameter and is related to the 

independent variables xi through a link function given as; 

log �− log[��\
"] − \
̂ _             (12) 

\
_ = _` + \
(_( + ⋯ + \
b_b          (13) 

This link function transforms q from the probability scale to 

interval [-∞, +∞] and also ensures that this parameter remains 

in the interval [0, 1]. The log(-log) link function in q is 

motivated by the analytical formula for the quantile which 

facilitates the interpretation of the parameters. Furthermore, 

the DW regression model can be introduced by relating β to 

the explanatory variable f (yi, q, β (xi)|xi), or by adding a link to 

other parameters f (yi, q(xi), β (xi)|xi). From (12) qi can be 

expressed as; 

�
 = 2C�cPd
                (14) 

From this the conditional probability mass function of the 

dependent variable Yi given xi is given as; 

*��
|\
" = f2C�ghijk&P) −  f2C�ghijk�&P'(")
   (15) 
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The likelihood of this equation is maximized numerically 

using standard non-linear optimization tools. 

Interpretation of the regression coefficients 

When a regression model has been estimated, we can obtain 

the mean and quantiles. The mean is obtained from the mean 

equation by calculating numerically using approximated 

moments of the DW regression [24]. 

The quantile equation (8) gives the median. Skewness is 

common in count data and for this reason, the median is more 

appropriate than the mean. Conditional median can easily be 

obtained from the closed form expression of quantiles for the 

DW regression as; 

X�\" = >?− @AB�;"
@AB�E�l""F

G
) − 1H           (16) 

Taking the log(-log) link function combined with the 

analytical expression offers a way of interpreting the 

parameters. Substituting (14) to (16) gives; 

log�X�\" Y 1" � (
Z log�log�2"" % (

Z \
̂ _     (17) 

The regression parameters α are interpreted in relation to 

the log of the median. This is an analogy with Poisson and NB 

models for which the parameters are linked to the mean. In 

particular, 
@AB �@AB�;"Cmn

Z  is related to the conditional median 

when all covariates are set zero, whereas 
Cmo

Z , � � 1, … , � can 

be related to the response corresponding to one unit of pb, 

keeping all other covariates constant. 

Diagnostic Checking 

It is essential to consider a diagnostic analysis to investigate 

the appropriateness of a model after fitting it. For DW 

regression, since the response variable is discrete, a residual 

analysis was performed on the basis of randomized quantile 

residuals, as developed by [26]. 

In particular we let; 

,
 � qC(�r
"                 (18) 

where q�. " Is the standard normal distribution function and 

ui is a uniform random variable on the interval; 

�s
 , t
u � lim&x&Py�[�; q{, !|]�[�
; q{, !|]u        (19) 

�s
 , t
u }  y�[�
 % 1; q{ 
 , !|]�[�
 ; �{
 , !|]u       (20) 

Apart from the sampling variability in �{
  and !| , these 

residuals follow the standard normal distribution. The validity 

of the DW model can therefore be assessed using the goodness 

of fit investigations of normality and residuals. Q-Q plots and 

normality tests were used. 

3.3. Artificial Neural Network Model 

Reference [27] defines Artificial Neural Network (ANN) 

as a parallel connection of a set of nodes referred to as 

neurons. It represents a function of explanatory variables 

which is composed of simple building blocks and which 

may be utilized to provide an approximation of the 

conditional expectations or, in particular, probabilities in 

regression. ANN is a non-parametric and data dependent 

technique. ANN are robust functions and analytical tools 

for predicting and classification problems that can model 

very complex non-linear functions to high accuracy levels 

using a process of learning that is similar to the learning 

process of the cognitive system of the human brain. [28, 29] 

are examples of research work where ANN has been 

applied for count data modelling. Multilayer Perceptron 

(MLP) is the most used architecture of ANN. MLP adopts 

back propagation (BP) algorithm as a learning process. This 

algorithm achieves the learning process by minimizing the 

sum of squared errors. ANN displays a complex input and 

output non-linear associations. MLP is made up of one 

input layer of units, a unit of output layer and a single or 

more hidden layers. The input units pass their inputs to the 

units in the first hidden layer or directly to the output units. 

Each hidden layer adds a constant (bias) to a weighted sum 

of its inputs and calculates an activation function of the 

result. This is then passed to hidden units in the next layer 

or to the output units. ANN adopts a set of input 

observations xi and computes outputs yi using a specified 

number of layers. 

For this study involving data characterized by skewness, 

ANN with a median neuron model in the hidden layer is 

considered. The architecture of this model is shown in Figure 

1. This figure represents a median neural model structure with 

k
th

 order and m-input. The weights between the inputs and the 

hidden layers is represented by W and is a matrix with m by k 

dimension. The hidden layer has k neurons which represents 

the order of the network. The incoming signals in the hidden 

layer constitutes the output of the neuron. 

 

Figure 1. Architecture of the median neuron model. 

Let s1, s2, · · ·, sm be incoming signals and yi (i=1, 2, · · ·, k) 

be the output of the i
th

 neuron, this can be represented as; 

�
 � X2~�s��4(, 4;, . . . , 4Q"             (21) 
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*
��
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                  (22) 

The activation function in the hidden layer neurons are 

linear and �(, �;, … , �� are the bias terms. The output layer 

has a single neuron and multiplicative neuron model was used 

in this layer. The weights of the hidden and output layers are 

taken as 1 and the bias term is taken as 0. The activation 

function is a sigmoid activation function in the output layer. 

The output is calculated as; 

*;��" = (
('���                (23) 

The algorithm of how the output for a learning sample is 

computed is given below with x1, x2, · · ·, xm representing the 

input values of the learning sample. 

The hidden layer neurons outputs are computed using the 

incoming signals given as; 

ℎ� = *([X2~�s� �3(�\( + �� , 3;�\; + �� , … , 3Q�\Q + ���] � = 1, 2, … , �                 (24) 

The network output is computed using the outputs of the 

hidden layer and a sigmoid activation function. 

+ = *;[∏ ℎ���:( ] = (
('�lb?∏ �����G F         (25) 

Model Development 

The development of ANN with a three-layer network 

structure of a back propagation (BP) learning algorithm 

involves various steps which include, scaling and normalizing 

of raw data to an appropriate format, data division, 

determining the number of input nodes, hidden layers, hidden 

nodes, output nodes and also determining an activation 

function. There is also training by applying BP algorithm and 

finally evaluating the model. 

Data normalization is done to smooth data so as to give 

better data generalization and improve performance. 

Normalization function is based on maximum and minimum 

values as suggested by [28]. The normalization formula is 

given as; 

p��� = p� − pQ
�pQ�l − pQ
�
��Q�l − �Q
�" + �Q
� 

Where; p� is the value that was normalized pQ
� is the minimum value of the statistic variable pQ�l  is the minimum value of the statistic variable     �Q
�  and �Q�l  are minimum and maximum values 

needed for normalization. 

In the data division step, data is divided into two parts, 

training set and testing set. The training set is used for model 

formulation and testing set is used for prediction. Data can be 

divided by a ratio such as 70%: 30%, 80%: 20% and 90%: 

10%. A ratio of 70%: 30% is appropriate model and avoid 

over-fitting which was used in this study. The number of 

hidden nodes is done via a trial and error method. The hidden 

neuron has the ability to influence the error on the nodes to 

which their output is connected. Error is used to estimate the 

stability of a neural network. Better stability is indicated by 

minimal error. Excessive hidden neurons cause over fitting, 

that is, the neural network overestimates the complexity of 

the problem. The purpose of the hidden layers to detect the 

features to capture data pattern and to perform the 

complicated non-linear mapping between the input and 

output variables. 

The learning rate and momentum is also considered where 

the value is a range from 0 to 1. A choice of the learning rate 

and momentum is very sensitive and a simple way to choose 

this is by trial and error method. There is a pre-defined 

stopping criterion; which acts as the core part of ANN. The 

criterion can either be that the number of iterations has been 

reached or the total sum of square errors is lower than a 

pre-determined value. 

3.4. Performance Measures 

The objective of each of the used models is to fit an accurate 

model for over-dispersed count data. The adequacy of the 

Artificial neural network and Discrete Weibull regression model 

is assessed using mean squared error (MSE) and root mean 

squared error (RMSE). An MSE value that is closer to zero, 

indicates a more useful model fit. The MSE is calculated as; 

X�5 = (
� ∑ ��{ − �
";�
:(             (26) 

The RMSE is given as; 

�X�5 = �(
� ∑ ��{ − �
";�
:(            (27) 

The best model is the one with the least root mean squared 

error. 

4. Data Simulation 

This study used simulated data to fit the DW regression 

model and the ANN model. In the simulation process, 

different sample sizes 100, 250, 500 and 1000 were considered. 

For this case, over-dispersion has been considered as it is the 

most common form of dispersion for count data. Two 

covariates were simulated. The first one following a normal 

distribution N (0, 1) and the other one uniformly distributed 

with parameters (0, 1.5). The true regression parameters are 

assumed to be as follows; 

_ = �_`, _(, _;" = �2, 0.5, 0.4"          (28) 

Selection of the shape parameter β of the DW regression 

model is made in a way that over- dispersion of the data is 

achieved. In this study β was taken to be 0.9. The parameter q 

is calculated from each X using (14). The simulation of this 

data is iterated 1000 times. 

To ensure that the generated data is dispersed in relation to 

the Poisson Model, the mean and variance of the dependent 

variable were obtained ad used to calculate the dispersion 
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coefficient. These summaries are given in Table 1. It can be 

seen that the Dip is greater than one for all the simulated 

sample sizes. This is an indication that the data is 

over-dispersed relative to the Poisson model. 

Table 1. Mean, variance and dispersion coefficient for various sample sizes. 

N Mean Variance Dip 

100 18.710 799.360 42.724 

N Mean Variance Dip 

250 16.648 350.301 21.042 

500 17.044 682.359 40.035 

1000 16.969 560.669 33.041 

To graphically illustrate the distribution of the simulated 

data, histogram for the different 1000 sample size is given in 

Figure 2. 

 

Figure 2. Histogram showing the distribution of simulated count variable for 100 sample size. 

5. Results and Discussions 

5.1. Fitting DW Regression Model 

DW regression model is fitted on the simulated data with 

the varying sample sizes. The estimates of the parameter 

values are obtained and summarized in Table 2. From this 

table it can be seen that there are minimal variations from the 

true values of the parameters. It is also important to note that 

as the sample size increases, the variations from the true 

values decreases. The p-values of the parameters are less than 

0.05 indicating that all the parameter estimates are significant 

at 0.05 level of significance. 

Diagnostic analysis was performed to investigate the 

appropriateness of the fitted model. The normality of the 

residuals was tested using the Kolmogorov-Smirnov test. This 

test returned a p-values given in Table 3. All the P-values are 

greater than 0.05 indicating that the residuals follow a normal 

distribution. Furthermore, a simulated 95% envelope added to 

Q-Q plots were plotted as shown in Figure 3. From the plots, 

majority of the points lie within the envelope’s bounds hence a 

good model fit. 

Table 2. Estimates from the fitted DW regression model. 

N Parameter Estimate Std. error P-value 

 _`  2.1326 0.3056 <0.001 

100 _(  0.5113 0.2406 0.0336 

 _;  0.4574 0.1067 <0.001 

 !  0.9483 0.0749 <0.001 

 _`  2.3374 0.2033 <0.001 

250 _(  0.4478 0.1579 0.0046 

 _;  0.3700 0.0664 <0.001 

 !  0.9923 0.0527 <0.001 

 _`  1.8712 0.1334 <0.001 

500 _(  0.5350 0.1083 <0.001 

 _;  0.4096 0.0487 <0.001 

 !  0.8767 0.8767 <0.001 

 _`  2.0223 2.0223 <0.001 

1000 _(  0.4813 0.4813 <0.001 

 _;  0.3960 0.3960 <0.001 

 !  0.8980 0.8980 <0.001 

Table 3. Kolmogorov-Smirnov test for normality P-values. 

N KS. Test (P-value) 

100 0.9830 

250 0.9355 

500 0.7039 

1000 0.1687 
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Figure 3. Q-Q plot of randomized quantile residuals of the discrete Weibull regression model for 1000 sample size. 

5.2. Fitting ANN Model 

ANN model is fitted on the data using median neuron model. 

A model with one hidden layer was fitted on the data. The 

selection of the number of nodes in the hidden layer was done 

through a trial and error method. Since the data had two input 

nodes, models with 1, 2 and 3 hidden nodes were tried and the 

one that produced minimal error was selected since it was 

considered to be stable. Models with one hidden node were 

selected for a sample size of 100 and 250. For the 500 and 

1000 sample sizes, models with 3 and 2 hidden nodes were 

chosen respectively. 

5.3. Performance Measures Comparison for Simulated Data 

Table 4. Summary of performance measures of the two models with varying 

sample sizes. 

N Statistic DW ANN 

100 MSE 2917.591 1026.521 

 RMSE 54.0147 32.039 

250 MSE 1157.197 1161.286 

 RMSE 34.018 34.078 

500 MSE 2203.939 1058.831 

 RMSE 46.946 32.539 

1000 MSE 1789.242 1350.225 

 RMSE 42.299 36.745 

The main aim of this study was to assess the performance of 

the two fitted models. Mean squared errors and residual mean 

squared errors were used to asses these models. The summary 

of this statistics is given in Table 4. From the results it can be 

seen that the MSE and RMSE is least for the ANN model in all 

the different sample sizes except for when n=250, these values 

are a higher for the DW regression model. 

5.4. Application on Real Data 

The ability of DW regression model and the ANN model to 

handle over-dispersion automatically was tested by applying 

this model on an over-dispersed data set. The data set used in 

this study is from German Health Survey. The data is available 

in the COUNT R package [31]. The data is comprised of three 

variables saved as a data frame. The data is saved as badhealth. 

The variables of the data set include; 

1. numvisit - the number of visits made to the doctor and 

ranges from 0 to 40 

2. badh - an indicator variable where 1 represents a patient 

claiming to be in bad health and 0 not. 

3. age - the age of patient and ranges from 20 to 60 years. 

The response variable for this study is taken to be numvisit 

which is a count variable with a sample mean of 2.353 and a 

sample variance of 11.98. The variance is larger than the mean 

indicating an over-dispersion relative to the Poisson model. The 

histogram showing the distribution of the data is given in Figure 4. 
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Figure 4. Histogram of the badhealth data. 

The two models are fitted on the data starting with DW 

regression model whose model summaries are given in Table 5. 

The DW regression model fitted on the data resulted in P-values 

of estimates less than 0.05 indicating that the explanatory 

variables are significant at 5% level of significance. The model 

residuals are examined to ascertain the suitability of the model. 

Figure 5 of randomized quantile residuals shows that the 

residuals followed a normal distribution with many points 

falling within the simulated 95% envelope. Furthermore, the 

Kolmogorov-Smirnov test p-value is 0.06626. 

 

Figure 5. Q-Q plot of randomized quantile residuals of the DW regression model fitted on badhealth data. 
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Table 5. Summary from DW regression model. 

 Estimate Std. error P-value 

Intercept 0.390940 0.133024 0.00329 

Badh 1.099217 0.112536 <0.001 

Age 0.006794 0.003365 0.04347 

Beta 0.988614 0.026497 <0.001 

The ANN model was fitted to the data with two input nodes, 

one hidden layer with 3 hidden nodes and one output node. 

Three hidden nodes were selected after a trial and error on four 

different hidden nodes. 

5.5. Performance Measures comparison for Real Data 

The objective of each of these two methods was to fit an 

accurate model on the badhealth data and make a prediction 

using the fitted model. The adequacy of the DW regression 

model and the Artificial Neural Network model is assessed on 

the basis of MSE and RMSE. The results are summarized in 

Table 6. The Artificial Neural Network model performs better 

than the DW regression model since it had minimal values of 

MSE and RMSE. The RMSE for DW regression model is 

69.0668 and that of ANN is 35.5652. 

Table 6. Summary of performance measures of the two models on badhealth 

data. 

Statistic DW ANN 

MSE 4770.227 1264.884 

RMSE 69.0668 35.56520 

6. Conclusions and Recommendations 

This study aimed at comparing the performance of DW 

regression model and ANN models. The two models were 

applied on a simulated data set and a real data set from 

German Health survey. The over-dispersion relative to the 

Poisson regression was considered in categorizing data as 

over-dispersed. The DW regression model has an attractive 

feature that is similar to the flexibility of the continuous 

Weibull distribution. DW regression model uses conditional 

quantiles unlike generalized linear models which uses the 

conditional mean as a central to interpretation. This property 

is useful for count data since they have a highly skewed 

distribution. The ANN model considered in this study is a 

high order neural network with a robust architecture. It 

considered a median neuron network so that it could 

adequately handle the skewed nature of over-dispersed count 

data. 

The performance of the two models were done based on 

MSE and RMSE. From the results, ANN model with the 

median neuron generally outperformed the DW regression 

model both on the simulated data and the application on 

badhealth data set. Future research should try different robust 

statistics of ANN such as trimmed mean and also it can be 

useful to consider both parameters q and β of the DW 

regression as functions of the covariates. 
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